Cho a,b,c \(\ge\) 0 . Cmr :
a, \(a+b\ge2\sqrt{ab}\)
b, \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
cho a,b,c ≥0.CMR
a+b+c ≥\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
áp dụng cô si ta có : \(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{matrix}\right.\)
cộng quế theo quế ta có : \(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Cách khác :3
\(a+b+c\text{≥}\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
⇔ \(2\left(a+b+c\right)\text{≥}2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
⇔ \(a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ac}+a\text{ ≥}0\)
⇔\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\text{≥}0\left(luôn-đg\right)\)
\("="\text{⇔}a=b=c\)
cho a,b,c \(\ge\)0 thỏa a+b+c=1.CMR
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)
Thật vậy, ta có:
\(a+bc\ge a^2+2a\sqrt{bc}+bc\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)
\(\Leftrightarrow1\ge a+2\sqrt{bc}\)
\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)
Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
cho a,b,c > 0 và a+b+c = 3. cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\sqrt{a}+\sqrt{a}+a^2\geq 3a$
$\sqrt{b}+\sqrt{b}+b^2\geq 3b$
$\sqrt{c}+\sqrt{c}+c^2\geq 3c$
Cộng theo vế thu được:
$2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq 3(a+b+c)$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})+(a^2+b^2+c^2)\geq (a+b+c)^2$
$\Leftrightarrow 2(\sqrt{a}+\sqrt{b}+\sqrt{c})\geq 2(ab+bc+ac)$
$\Leftrightarrow \sqrt{a}+\sqrt{b}+\sqrt{c}\geq ab+bc+ac$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
Áp dụng BĐT BSC:
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
\(=\dfrac{a+b+c}{2}\)
\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
a) Cho a , b > 0 CMR : 3(b2+2a2) ≥ (b+2a)2
b) Cho a,b,c > 0 thõa mãn ab+bc+ca = abc
CMR : \(\dfrac{\sqrt{b^2+2a^2}}{ab}+\dfrac{\sqrt{c^2+2b^2}}{bc}+\dfrac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\)
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
cho a,b,c>0 thỏa mãn: a+b+c=3
CMR: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
Ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\left(a+b+c\right)^2=9\)(*) (Do a+b+c = 3)
Ta sẽ c/m BĐT (*) luôn đúng. Thật vậy:
Áp dụng BĐT AM-GM cho 3 số không âm:
\(a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt[3]{a^2\sqrt{a}.\sqrt{a}}=3a\Rightarrow a^2+2\sqrt{a}\ge3a\)
Tương tự: \(b^2+2\sqrt{b}\ge3b;c^2+2\sqrt{c}\ge3c\)
Cộng 3 BĐT trên theo vế thì có: \(a^2+b^2+c^2+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\left(a+b+c\right)=9\)
=> BĐT (*) luôn đúng với mọi a,b,c > 0 t/m a+b+c=3 => BĐT ban đầu đúng
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
cho a,b,c >0
cmr \(\sqrt{\frac{a+b}{c+ab}}+\sqrt{\frac{b+c}{a+bc}}+\sqrt{\frac{c+a}{b+ca}}\ge\)3
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
cho a ≥ 9 b≥4 c≥1 cmr:.....
\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)
Áp dụng bđt AM-GM cho 2 số không âm ta có:\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\)
\(=ab\sqrt{1.\left(c-1\right)}+\dfrac{bc\sqrt{9\cdot\left(a-9\right)}}{3}+\dfrac{ca\sqrt{4.\left(b-4\right)}}{2}\)\(\le ab.\dfrac{1+\left(c-1\right)}{2}+bc.\dfrac{9+\left(a-9\right)}{6}+ca.\dfrac{4+\left(b-4\right)}{4}=abc\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}\right)=\dfrac{11abc}{12}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=c-1\\9=a-9\\4=b-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=18\\b=8\end{matrix}\right.\)