Những câu hỏi liên quan
H24
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
VA
Xem chi tiết
LQ
6 tháng 12 2016 lúc 18:57

1.

y=f(-1)=3*(-1)-2=-5

y=f(0)=3*0-2=-2

y=f(-2)=3*(-2)-2=-8

y=f(3)=3*3-2=7

Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.

3b

Khi y=5 =>5=5-2*x=>2*x=0=> x=0

Khi y=3=>3=5-2*x=>2*x=2=>x=1

Khi y=-1=>-1=5-2*x=>2*x=6=>x=3

Bình luận (0)
HR
14 tháng 12 2016 lúc 19:09

f(-1)=3.1-2=3-2=1

f(0)=3.0-2=0-2=-2

f(-2)=3.(-2)-2=-6-2=-8

f(3)=3.3-2=9-2=7

Bình luận (0)
BN
4 tháng 4 2018 lúc 11:56

1.

y=f(-1)=3*(-1)-2=-5

y=f(0)=3*0-2=-2

y=f(-2)=3*(-2)-2=-8

y=f(3)=3*3-2=7

Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.

3b

Khi y=5 =>5=5-2*x=>2*x=0

=> x=0

Khi y=3=>3=5-2*x=>2*x=2=>x=1

Khi y=-1=>-1=5-2*x=>2*x=6

=>x=3

Bình luận (0)
H24
Xem chi tiết
LL
Xem chi tiết
H24
17 tháng 5 2021 lúc 17:16

`x/3=y/5`

`=>5x=3y`

`=>(x-y)/(x+y)`

`=(5x-5y)/(5x+5y)`

`=(3y-5y)/(3y+5y)`

`=(-2y)/(8y)`

`=-1/4`

Bình luận (1)
NT
17 tháng 5 2021 lúc 17:20

Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{x+y}{3+5}=\dfrac{x-y}{-2}=\dfrac{x+y}{8}\)

\(\Leftrightarrow\dfrac{x-y}{x+y}=\dfrac{-2}{8}=\dfrac{-1}{4}\)

Bình luận (0)
DV
Xem chi tiết
NM
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Bình luận (0)
LH
Xem chi tiết
NP
Xem chi tiết
H24
22 tháng 12 2023 lúc 20:41

Ta có:

\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)

nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)

Thay \(x=4;y=1\) vào \(P\), ta được:

\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)

\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)

\(=1-1=0\)

Vậy \(P=0\) khi \(x=4;y=1\).

Bình luận (0)
LK
Xem chi tiết
PD
6 tháng 4 2021 lúc 16:12

a/ \(A=2x+2y+3xy(x+y)+5(x^3y^2+x^2y^3)+4\\=2(x+y)+3xy(x+y)+5x^2y^2(x+y)+4\\=2.0+3xy.0+5x^2y^2.0+4=4\)

b/ \(B=(x+y)x^2-y^3(x+y)+(x^2-y^3)+3\\=(x+y)(x^2-y^3)+(x^2-y^3)+3\\=(x+y+1)(x^2-y^3)+3\\=(-1+1)(x^2-y^3)+3\\=0(x^2-y^3)+3\\=3\)

Bình luận (0)