Tam giác ABC có AB = 10 cm; AC = 15 cm. Một đường thẳng đi qua điểm M thuộc cạnh AB song song với BC cắt AC tại N sao cho AN = BM. Tính độ dài AM
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có AB = 6 cm ; AC = 8 cm ; BC = 10 cm . CM : Tam giác ABC là tam giác vuông .
Áp dụng định lý Py-ta-go đảo vào tam giác ABC, có:
AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Suy ra tam giác ABC vuông
!
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
Cho tam giác ABC có AB =6 cm, AC =8 cm, BC =10 cm. Chứng tỏ tam giác ABC vuông.
Ta thấy BC là cạnh lớn nhất
Ta có: \(AB^2+AC^2=6^2+8^2=100.\)
\(BC^2=10^2=100\)
\(\Rightarrow BC^2=AB^2+AC^2\)
Xét tam giác ABC có \(BC^2=AB^2+AC^2\)
=> TAM GIÁC ABC vuông tại A( Py-ta-go đảo)
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông ?
Cho Tam giác ABC vuông tại a có ab 8 cm, ac = 7, bc= 10 cm chứng minh Tam giác abc vuông
Cho tam giác ABC có AB = AC = 13 cm, BC = 10 cm. Tính độ dài đường trung tuyến AM của tam giác ABC.
Chú ý AM là đường cao, từ đó dùng Định lý Pytago tính được AM = 12 cm.
cho tam giác ABC vuông tại A có AB = 6 cm BC = 10 cm vẽ đường cao AH của tam giác ABC( H thuộc BC )
1 cm tam giác ABC đồng dạng tam giác hba
2 cm AB bình = BC.BH áp dụng tính HB
3 tia phân giác của góc B cắt AC tại K cmr AK.AC=AH.KC
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
3: Xét ΔBAC có BK là đường phân giác
nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)
mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)
Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\)
Do đó: ΔAHC\(\sim\)ΔBHA
Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)
=>BH/AH=AB/AC
hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)
hay \(AK\cdot AC=AH\cdot KC\)
Cho hình lăng trụ đứng ABC.DEF, đáy là tam giác ABC có AB = 6 cm, BC = 8 cm, AC = 10 cm và chiều cao của lăng trụ là 12 cm. Tam giác ABC là tam giác gì?
A. Vuông tại A
B. Vuông tại B
C. Vuông tại C
D. Đều
cho tam giác ABC có cạnh AB=10cm cạnh AC=10 cm cạnh BC=3cm
a,hỏi tam giác ABC có phải tam giác vuông k?vì sao
a: ΔABC không vuông vì \(BC^2< >AB^2+AC^2;AB^2< >AC^2+BC^2;AC^2< >AB^2+BC^2\)
Giải chi tiết Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE ^ BC (E Î BC).
Chứng minh DA = DE.
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh tam giác BFC cân
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC.
a. Ta có: \(AB^2+AC^2=6^2+8^2=100=BC^2\)
Áp dụng định lí Py-ta-go đảo ta có: tam giác ABC vuông tại A
b. Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có: \(\left\{{}\begin{matrix}BDchung\\\widehat{ABD}=\widehat{EBD}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta ABD\)=\(\Delta EBD\) \(\Rightarrow\)DA=DE(dpcm)
c. Xét \(\Delta FAD\) vuông tại A và \(\Delta CED\) vuông tại E có: \(\left\{{}\begin{matrix}DA=DE\\\widehat{ADF}=\widehat{EDC}\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta FAD\)=\(\Delta CED\)\(\Rightarrow\)AF=EC
Mà BF=AB+BF, BC=BE+EC, AF=EC, AB=BE
\(\Rightarrow\)BF=BC\(\Rightarrow\)\(\Delta BFC\) cân tại B
d. Xét \(\Delta BFC\) cân tại B có: CA,FE là đường cao giao nhau tại D
\(\Rightarrow\)BD cũng là đường cao của \(\Delta BFC\)
mà \(\Delta BFC\) cân tại B nên BD vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\) BD là đường trung trực (dpcm)
Cho tam giác ABC có AB = 15 cm, AC = 20 cm. Trên cạnh AB lấy điểm D sao có AD = 10 cm , trên cạnh AC lấy điểm E sao cho AE = 15 cm. nối D với E . Tính diện tích tam giác ABC biết diện tích tam giác ADE = 45 cm2