tìm m để phương trình (\sqrt(x)+1)*(\sqrt(x)-1)/(\sqrt(x +1))=m-x có nghiệm x
tìm m để phương trình \(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}=m\) có nghiệm
\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}-\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=m\)
Trong mp tọa độ, gọi \(A\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) ; \(B\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) và \(M\left(x;0\right)\) \(\Rightarrow AB=1\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+\dfrac{1}{2};-\dfrac{\sqrt{3}}{2}\right)\\\overrightarrow{BM}=\left(x-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\\BM=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\end{matrix}\right.\)
Theo BĐT tam giác: \(\left|AM-BM\right|< AB=1\)
\(\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)
Tìm m để bất phương trình sau có nghiệm :
\(\sqrt{x-1}+m\sqrt{x+1}+4\sqrt[4]{x^2-1}\)≥ 0
Tìm m để bất phương trình sau có nghiệm : \(\sqrt{x-1}+m\sqrt{x+1}4\sqrt[4]{x^2-1}\) ≥ 0
tìm m để phương trình sau có nghiệm
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)
Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$
$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$
mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$
=> m≥0
Đặt :
\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)
DKXĐ : \(-1\le x\le8\)
\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1)
BBT của \(t^2\) :
\(x\) | \(-1\) \(0\) \(8\) |
\(t^2\) | \(9+2\sqrt{2}\) \(9\) \(9\) |
\(t\) | \(1+2\sqrt{2}\) \(1\) \(2\sqrt{2}\) |
\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)
Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)
\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)
BBT của \(f\left(t\right)\) :
\(t\) | \(1\) \(2\sqrt{2}\) |
\(f\left(t\right)\) | \(4\sqrt{2}-1\) \(-6\) |
\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\) thì pt có nghiệm
\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)
Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU
Tìm m để phương trình có nghiệm :
\(\left(\sqrt{x-1}-m\right).\left(\sqrt{x}+m\right)+m^2=2\sqrt[4]{x\left(x-1\right)}+1\)
Cho phương trình -8(\(\sqrt{x+1}+\sqrt{8-x}\) ) + \(2\sqrt{\left(x+1\right)\left(8-x\right)}-2m=0\) tìm m để phương trình có nghiệm
tìm m để các phương trình sau có nghiệm
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}\)
Để pt có nghiệm thì
\(1+x\ne0\) và \(8-x\ne0\)
\(\Rightarrow x\ne-1\) và \(x\ne8\)
\(\sqrt{1+x} +\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)
( mk viết thiếu đề)
Để pt có nghiệm thì
1+x≠01+x≠0 và 8−x≠08−x≠0
⇒x≠−1⇒x≠−1 và x≠8
Cho xin một like đi các dân chơi à.
P = \(\dfrac{x-\sqrt{x}+1}{x+1}\)
a. Tìm m để phương trình ẩn x P = \(\dfrac{m\sqrt{x}}{x+1}\) có hai nghiệm phân biệt.
a, đk : x > = 0
Ta có : \(P=\dfrac{x-\sqrt{x}+1}{x+1}=\dfrac{m\sqrt{x}}{x+1}\Rightarrow x-\sqrt{x}+1=m\sqrt{x}\)
\(\Leftrightarrow x-\left(m+1\right)\sqrt{x}+1=0\)
Đặt \(\sqrt{x}=t\)khi đo x = t^2
\(t^2-\left(m+1\right)t+1=0\)
Để pt có 2 nghiệm pb khi
\(\Delta=\left(m+1\right)^2-4=m^2+2m-3>0\)
Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{1-x}\) với x≥0,x≠1
a) Rút gọn A
b) Tìm m để phương trình mA=\(\sqrt{x}-2\) có 2 nghiệm phân biệt
c) Tìm x để A nhận giá trị nguyên