Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

tìm m để phương trình \(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}=m\) có nghiệm

NL
26 tháng 3 2021 lúc 22:35

\(\Leftrightarrow\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}-\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}=m\)

Trong mp tọa độ, gọi \(A\left(-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) ; \(B\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) và \(M\left(x;0\right)\) \(\Rightarrow AB=1\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+\dfrac{1}{2};-\dfrac{\sqrt{3}}{2}\right)\\\overrightarrow{BM}=\left(x-\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\\BM=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{3}}{2}\right)^2}\end{matrix}\right.\)

Theo BĐT tam giác: \(\left|AM-BM\right|< AB=1\)

\(\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết
CN
Xem chi tiết
QA
Xem chi tiết
H24
Xem chi tiết
AR
Xem chi tiết
KR
Xem chi tiết
NC
Xem chi tiết