Những câu hỏi liên quan
H24
Xem chi tiết
PL
9 tháng 4 2023 lúc 15:05

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

Bình luận (1)
PL
9 tháng 4 2023 lúc 15:19

b: \(\Delta=\left(-5\right)^2-4\left(m-2\right)=25-4m+8=33-4m\)

Theo viet:

\(x_1+x_2=-\dfrac{b}{a}=5\)

\(x_1x_2=\dfrac{c}{a}=m-2\)

Để pt có 2 nghiệm dương phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}33-4m>0\\5>0\left(TM\right)\\m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\x>2\end{matrix}\right.\Leftrightarrow m=2< m< \dfrac{33}{4}\)

Vậy \(2< m< \dfrac{33}{4}\) thì pt có 2 nghiệm dương phân biệt.

Theo đầu bài: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=\dfrac{3}{2}\left(\sqrt{x_1x_2}\right)\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow5+2\sqrt{x_1x_2}=\dfrac{9}{4}\left(m-2\right)\)

\(\Leftrightarrow\dfrac{9}{4}\left(m-2\right)-2\sqrt{m-2}-5=0\)

Đặt \(\sqrt{m-2}=t\Rightarrow m-2=t^2\)

\(\Rightarrow\dfrac{9}{4}t^2-2t-5=0\)

\(\Leftrightarrow\dfrac{9}{4}t^2-2+\left(-5\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(9t+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\9t+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=2\left(TM\right)\\t=-\dfrac{10}{9}\left(\text{loại}\right)\end{matrix}\right.\)

Trả ẩn:

\(\sqrt{m-2}=2\)

\(\Rightarrow m-2=4\)

\(\Rightarrow m=6\)

Vậy m = 6 thì x1 , x2 thoả mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=\dfrac{3}{2}\).

Bình luận (1)
TV
Xem chi tiết
NT
22 tháng 6 2023 lúc 19:53

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

Bình luận (0)
PT
Xem chi tiết
VN
Xem chi tiết
NT
10 tháng 5 2023 lúc 7:53

(x1-1)(x2^2-5x2+m-4)=0

=>x1=1 và x2^2-x2(x1+x2-1)+x1x2+1=0

=>x1=1 và x2^2-x2x1-x2^2+x2+x1x2+1=0

=>x1=1 và x2=-1

x1*x2=m-3

=>m-3=-1

=>m=2

Bình luận (0)
TH
Xem chi tiết
BH
Xem chi tiết
NV
20 tháng 5 2016 lúc 21:09

a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm

b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)

    \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)

Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)

Bình luận (0)
HT
20 tháng 5 2016 lúc 21:25

Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)

Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)

Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\)\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)

Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)

Bình luận (0)
NV
20 tháng 5 2016 lúc 21:28

cái chỗ cuối là x1 x2 thay bằng m1 m2 nha, mình ghi lộn á, cái chỗ đáp số ấy

Bình luận (0)
TT
Xem chi tiết
AH
13 tháng 5 2021 lúc 17:52

Lời giải:

$\Delta'=4+m^2+1=5+m^2>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+1)\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=-\frac{1}{2}\)

\(\Leftrightarrow \frac{16}{-(m^2+1)}=\frac{-1}{2}\Leftrightarrow m^2+1=32\)

\(\Rightarrow m=\pm \sqrt{31}\)

Bình luận (1)
TA
Xem chi tiết
NT
14 tháng 3 2022 lúc 14:13

\(\Delta'=16-m\)Để pt có 2 nghiệm pb x1 ; x2 khi 

\(\Delta'>0\Leftrightarrow16-m>0\Leftrightarrow m< 16\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=8\left(1\right)\\x_1x_2=m\left(2\right)\end{cases}}\)

Ta có \(x_1-x_2=2\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=10\\x_2=x_1-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\)

Thay vào (2) ta được \(m=5.3=15\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
NT
21 tháng 4 2016 lúc 21:09

CHÀO BẠN

Áp dụng Viét

x1*x2=4m (1)x1+x2=2(m+1) (2)

(*)       (x1+m)(x2+m)=3m^2+12

<=>x1*x2+m(x1+x2)=3m^2+12  (**)

thay (1);(2) vô (**) =>....

Mình bày hướng có chỗ nào sai tự sửa

Bình luận (0)
VN
Xem chi tiết
NT
5 tháng 4 2021 lúc 21:56

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

Bình luận (0)
H24
5 tháng 4 2021 lúc 21:58

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

Bình luận (1)
NT
5 tháng 4 2021 lúc 22:00

2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)

a) Ta có: \(x_1+x_2=-1\)

\(\Leftrightarrow-2m=-1\)

hay \(m=\dfrac{1}{2}\)

b) Ta có: \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)

\(\Leftrightarrow4m^2-4m+2-13=0\)

\(\Leftrightarrow4m^2-4m+1-12=0\)

\(\Leftrightarrow\left(2m-1\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)

Bình luận (1)