Cho phương trình \(x^2 -2mx + 2m^2 -1=0\) (1) ( m là tham số; x là ẩn số )
Tìm để phương trình (1) có hai nghiệm phân biệt x1;x2 thoả mãn hệ thức : \(x_1^3 - x_1^2 + x_2^3 -x_2^2=2\)
Cho phương trình : x\(^2\) - 2mx + 2m - 7 = 0 (1) ( m là tham số )
a) Giải phương trình (1) khi m = 1
b) Tìm m để x = 3 là nghiệm của phương trình (1). Tính nghiệm còn lại.
c) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x\(_1\), x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_2\)\(^2\) = 13
d) Gọi x\(_1\),x\(_2\) là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
x\(_1\)\(^2\) + x\(_2\)\(^2\) + x\(_1\)x\(_2\).
Giải giúp mình với ạ
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
Bài 2: Cho phương trình x2-2mx+2m-2=0 (1) (m là tham số)
a) Giải phương trình (1) khi m=1
b) Chứng minh phương trình (1) luôn có 2 nghiệm x1,x2. Tìm m để x12 +x22 =12
a) Với m=1,ta có:
x2-2.1.x+2.1-2=0
<=> x2-2x=0
<=> x(x-2)=0
<=> x=0 hoặc x-2=0
<=> x=0 hoặc x=2
Tìm các giá trị tham số m để phương trình x^2 - 2mx + 2m -1=0 có hai nghiệm x1;x2 sao cho \(\left(x_1^2-2mx+3\right)\left(x_2^2-2mx-2\right)=50\)
Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?
Cho phương trình \(x^2-2mx+2m-1=0\)(m là tham số). TÌm m để phương trình có 2 nghiệm phân biệt là hai kích thước hình chữ nhật có diện tích bằng 7
Gọi hai kích thước của hình chữ nhật đó là a và b (ĐK: a > b > 0)
\(\Delta=\left(-2m\right)^2-4\left(2m-1\right)\)
= 4m2 - 8m + 4 = (2m - 2)2 > 0
Để pt có 2 no phân bt thì 2m - 2 khác 0 <=> m khác 1
Theo vi-et:\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-1\end{cases}}\)
Theo đề: a.b = 7 <=> 2m - 1 = 7
<=> m = 4
Vậy m = 4 là gtri cần tìm
cho hàm số f(x)=sin2x+2(1-2m)cos2x-2mx+1. Với giá trị nào của tham số m thì phương trình f'(x)=0 có nghiệm
\(f'\left(x\right)=2cos2x-4\left(1-2m\right)sin2x-2m\)
Phương trình \(f'\left(x\right)=0\) có nghiệm
\(\Leftrightarrow2cos2x-4\left(1-2m\right)sin2x=2m\) có nghiệm
\(\Leftrightarrow cos2x-2\left(1-2m\right)sin2x=m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(1^2+4\left(1-2m\right)^2\ge m^2\)
\(\Leftrightarrow15m^2-16m+5\ge0\)
\(\Leftrightarrow15\left(m-\dfrac{8}{15}\right)^2+\dfrac{11}{15}\ge0\) (luôn đúng)
Vậy \(f'\left(x\right)=0\) có nghiệm với mọi m
Cho phương trình:
x2 - 2mx - 4m - 5 = 0 (m là tham số)
Tìm m để phương trình có nghiệm thoả mãn hệ thức:
\(\dfrac{1}{2}x_1^2-\left(m-1\right)x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Delta-=m^2+4m+5=\left(m+1\right)^2+1>0;\forall m\)
Pt đã cho luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-5\end{matrix}\right.\)
\(\dfrac{1}{2}x_1\left(x_1+x_2\right)-\dfrac{1}{2}x_1x_2-\left(m-1\right)x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow mx_1+\dfrac{4m+5}{2}-mx_1+x_1+x_2-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow\dfrac{4m+5}{2}+2m-2m+\dfrac{33}{2}=762019\)
\(\Leftrightarrow2m+19=762019\)
\(\Rightarrow m=...\)
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
cho phường trình:\(^{x^2-2mx+2m-4=0}\) (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt \(_{x_1,x_2}\) thỏa mãn \(x_1+2x_2=8\)
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=m^2-(2m-4)=m^2-2m+4>0$
$\Leftrightarrow (m-1)^2+3>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-4$
Khi đó:
$x_1+2x_2=8$
$\Leftrightarrow 2m+x_2=8$
$\Leftrightarrow x_2=8-2m$
$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$
$2m-4=x_1x_2=(4m-8)(8-2m)$
$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$
$\Leftrightarrow (m-2)[2(8-2m)-1]=0$
$\Leftrightarrow (m-2)(15-4m)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0
Bài 1: Giải và biện luận phương trình sau theo tham số m:
a) (m - 2)x2 - 2mx + m +1 = 0
b) (m - 3)x2 - 2mx + m - 6 = 0
Bài 2: Cho phương trình: (m2 - 4)x2 +2(m + 2)x + 1 = 0, với tham số m:
a) Tìm m để phương trình có nghiệm x
b) Tìm m để phương trình có nghiệm duy nhất
Bài 3: Tìm m để phương trình sau có nghiệm duy nhất. Tìm nghiệm duy nhất đó:
(m - 2)x2 - 2mx + 2m - 3 = 0