Những câu hỏi liên quan
NA
Xem chi tiết
H24
7 tháng 4 2019 lúc 15:52

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

Bình luận (0)
H24
7 tháng 4 2019 lúc 15:53

ak bạn thêm kết kuận nha!

Bình luận (0)
NH
7 tháng 4 2019 lúc 16:07

\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(h\left(x\right)=\left(2x^5+x^4+1x^2+x+1\right)-\left(2x^5+x^4-x^2+1\right)\)

\(h\left(x\right)=2x^5+x^4+x^2+x+1-2x^5-x^4+x^2-1\)

\(h\left(x\right)=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(x^2+x^2\right)+\left(1-1\right)+x\)

\(h\left(x\right)=0+0+2x^2+0+x\)

\(h\left(x\right)=2x^2+x\)

Bình luận (0)
CM
Xem chi tiết
TV
Xem chi tiết
NL
29 tháng 3 2020 lúc 12:21

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

Bình luận (0)
 Khách vãng lai đã xóa
VT
29 tháng 3 2020 lúc 11:59

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
H24
Xem chi tiết
NH
6 tháng 3 2018 lúc 20:25

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

Bình luận (0)
MS
6 tháng 3 2018 lúc 23:38

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-

Bình luận (1)
H24
6 tháng 3 2018 lúc 20:16

@phynit, giải hộ em !

Bình luận (0)
KT
Xem chi tiết
HK
Xem chi tiết
DH
6 tháng 4 2017 lúc 11:27

\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)

=> x = 1 và x = 3 là nghiệm của đa thức f(x)

Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

=> nghiệm của đa thức g(x) là x = { 1; 3 }

Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)

\(\Rightarrow-a+b=2\)(1)

Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)

\(\Rightarrow3a-b=8\)(2)

Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10

=> 2a = 10 => a = 5

=> - 5 + b = 2 => b = 7

Vậy a = 5 ; b = 7

Bình luận (0)
NM
6 tháng 4 2017 lúc 11:26

(x-1)(x-3)=0

=>x-1=0 hoặc x-3=0

=>x=1 hoặc x=3

Vậy nghiệm của f(x) là 1 và 3

Nghiệm của g(x) cũng là 1 và 3

Với x=1 ta có g(x)=1+a+b-3=0

=>a+b-2=0

a+b=2

Với x=3 ta có g(x)=27-9a+3b-3=0

=>24-9a+3b=0

=>8-3a+b=0

=>3a-b=8

a=\(\frac{8+b}{3}\)

Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)

Bình luận (0)
ND
6 tháng 4 2017 lúc 11:41

Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.

Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:

\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)

Vậy a=5 và b=7

Bình luận (0)
TN
Xem chi tiết
HH
9 tháng 11 2016 lúc 21:19

a, \(x-2x^2+2x^2-x+4=4\)

b,\(x^2-5x-x^2-2x+7x=0\)

c,\(x^2-x+1\)

\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Bình luận (0)
H24
19 tháng 4 2018 lúc 22:08

a) b)c)PT vô nghiệm

Bình luận (0)
DN
Xem chi tiết
BA
26 tháng 3 2020 lúc 19:53

1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)

\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)

Sắp xếp theo lũy thừa giảm dần của biến x:

\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)

2. Bậc của đa thức: 4

Hệ số tự do: 1

Hệ số cao nhất: 7

3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)

\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)

\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)

\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)

\(\)

Bình luận (0)
 Khách vãng lai đã xóa