Tính S=\(2^{2009}-2^{2008}-2^{2007}-...-2^2-2-1\)
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)
Tính A= 2009/2+2008/(2^2)+2007/(2^3)+...+3/(2^2007)+2/(2^2008)+1/(2^2009)
tính A = 3S - 1 - 3^2009
biết S = 1-2+2^2-2^3+.....-2^2007+2^2008
S= 22009-22008-22007-........-22-2-1
Tính S
\(S=2^{2009}-2^{2008}-2^{2007}-...-2^2-2-1\)
\(2S=2^{2010}-2^{2009}-2^{2008}-...-2^3-2^2-2\)
\(2S-S=2^{2010}-1\)
\(S=2^{2010}-1\)
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.< ( Cô bé tháng 1 )
So sánh
bài 1 :A= 2006/2007-2007/2008+2008/2009-2009/2010
B= -1/2006*2007-1/2008*2009
bài 2: C= 2006/2007+2007/2008+2008/2009+2009/2006 với 4
Tính nhanh :a)2/5+4/5 nhân 5/2
b)2008/2009-2009/2008+1/2009+2007/2008
Tính:
\(S=2^{2009}-2^{2008}-2^{2007}-...-2^2-2-1\)
S = 22009 - 22008 - 22007 - ... - 22 - 2 - 1 => 2S = 22010 - 22009 - 22008 - ... - 23 - 22 - 2
S = 2S - S = (22010 - 22009 - 22008 - ... - 23 - 22 - 2) - (22009 - 22008 - 22007 - ... - 22 - 2 - 1)
S = 22010 - 22009 - 22009 + 1 = 22010 - 22009.2 + 1 = 22010 - 22010 + 1= 0 + 1 = 1
Tính tỉ số B A , biết: 2008 1 2007 2 ... 3 2006 2 2007 1 2008 2009 1 2008 1 2007 1 ... 4 1 3 1 2 1 = + + + + + = + + + + + + B A
Tìm max của biểu thức: 1 3 4 2 + − x x .
Tính nhanh:a)2/5+4/5x5/2
b)2008/2009-2009/2008+1/2009+2007/2008
a) \(\dfrac{2}{5}+\dfrac{4}{5}\times\dfrac{5}{2}\)
\(=\dfrac{2}{5}+\dfrac{4\times5}{5\times2}\)
\(=\dfrac{2}{5}+\dfrac{4}{2}\)
\(=\dfrac{2}{5}+2\)
\(=\dfrac{2}{5}+\dfrac{10}{5}\)
\(=\dfrac{12}{5}\)
b) \(\dfrac{2008}{2009}-\dfrac{2009}{2008}+\dfrac{1}{2009}+\dfrac{2007}{2008}\)
\(=\left(1-\dfrac{1}{2009}\right)-\left(1+\dfrac{1}{2008}\right)+\dfrac{1}{2009}+\left(1-\dfrac{1}{2008}\right)\)
\(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=\left(1-1+1\right)-\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)-\left(\dfrac{1}{2008}+\dfrac{1}{2008}\right)\)
\(=1-\dfrac{2}{2008}\)
\(=\dfrac{2008}{2008}-\dfrac{2}{2008}\)
\(=\dfrac{2006}{2008}\)
\(=\dfrac{1003}{1004}\)
a: =2/5+4/2
=2/5+2
=12/5
b: \(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=1-\dfrac{2}{2008}=1-\dfrac{1}{1004}=\dfrac{1003}{1004}\)