Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 7 2017 lúc 6:24

Vì tam giác ABC cân tại A nên AE là đường cao đồng thời là đường trung tuyến

=> E là trung điểm BC => EB = EC = 5

Xét ABE vuông tại E có:

Mặt khác:

Xét ABH vuông tại H có:

Đáp án cần chọn là: A

Bình luận (0)
H24
Xem chi tiết
LP
31 tháng 8 2017 lúc 15:51

kẽ đường cao AH,tam giác ABC cân tại A=>AH cũng là trung tuyến của BC=>BH=1/2BC=5cm 
xét tam giác AHB theo DL Pitago ta tính dc AH=12cm 
=>cosBAH=AH/AB=12/13 
=>cosBAC=2*12/13=24/13(vì AH là fân giác góc BAC)

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 3 2023 lúc 17:53

loading...  loading...  

Bình luận (0)
QN
Xem chi tiết
NT
11 tháng 1 2022 lúc 18:50

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

Bình luận (0)
TN
Xem chi tiết
HL
Xem chi tiết
NT
8 tháng 4 2022 lúc 19:50

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

Do đó: ΔABC=ΔADC

Bình luận (1)
HL
9 tháng 4 2022 lúc 5:43

A acbangwf cái mm

Bình luận (0)
DA
Xem chi tiết
NL
28 tháng 4 2021 lúc 21:23

\(AC=AB=6\)

Áp dụng định lý phân giác:

\(\dfrac{AD}{AB}=\dfrac{DC}{BC}\Leftrightarrow\dfrac{AD}{6}=\dfrac{6-AD}{10}\)

\(\Leftrightarrow10AD=36-6AD\Rightarrow AD=\dfrac{9}{4}\) (cm)

\(\Rightarrow DC=AC-AD=\dfrac{15}{4}\) (cm)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2018 lúc 15:41

Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.

Có BM = BC/2 = 6cm

Áp dụng định lí Pytago trong tam giác vuông ABM có:

AM2 = AB2 - BM2 = 102 - 62 = 64 ⇒ AM = 8m. Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 9 2019 lúc 15:38

Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.

Áp dụng định lí Pytago trong tam giác vuông ABM có:

BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 5 2018 lúc 8:55

Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.

Áp dụng định lí Pytago trong tam giác vuông ABM có:

BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.

Chọn D

Bình luận (0)