\(\dfrac{\left(-5\right)^{9x^2+1}}{25}=-125\)
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Thu gọn \(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-125}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\cdot\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{5\left(x+1\right)\left(x-5\right)}-\dfrac{\left(x+3\right)\cdot3\left(x+1\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{x+5}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{4\left(x+3\right)^2+\left(x+5\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4x^2+24x+36+x^2+10x+25-x^2-2x-1}{\left(x+1\right)\cdot\left(x+5\right)}\)
\(=\dfrac{4x^2+32x+60}{\left(x+1\right)\left(x+5\right)}=\dfrac{4\left(x^2+8x+15\right)}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)\cdot\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}=\dfrac{4x+12}{x+1}\)
Tính nhanh A=\(\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right).....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....0......\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=0\)
C1. Kết quả của phép tính \(\left(\dfrac{4}{25}\right)^2.\left(\dfrac{2}{5}\right)^6:\left(\dfrac{-8}{125}\right)^8\) là :
A. \(\dfrac{-2}{5}\) B. \(\dfrac{2}{5}\) C. \(\dfrac{4}{25}\) D. -1
C2. Kết quả của phép tính \(\dfrac{15}{19}.\dfrac{2}{3}-\dfrac{7}{19}.\dfrac{2}{3}+\dfrac{8}{3}.\dfrac{17}{19}\) là :
A. \(\dfrac{17}{19}\) B. \(\dfrac{19}{3}\) C. \(\dfrac{8}{3}\) D. -1
C3. Cho | 3x + 2 | = | 5x - 6 | . Tích các giá trị của x thỏa mãn đẳng thức đã cho là :
A.2 B.4 C.\(\dfrac{1}{2}\) D. 8
C4. Nhà nước trích tiền ủng hộ miền trung khắc phục hậu quả cơn bão số 9 thành ba đợt lần lượt tỉ lệ với 7;8;9 . Biết rằng tổng số tiền đợt hai và đợt ba nhiều hơn đợt một là 80 tỉ . Số tiền ủng hộ đợt hai là :
A. 56 tỉ B.64 tỉ C.72 tỉ D.80 tỉ .
Viết dưới dạng tự luận giúp mk nha mn , thankk .
Viết hết tất cả dưới dạng tự luận luôn à bạn?
C1. Mik ko bik vì bấm máy tính thì nó ra kết quả quá lớn.
C2. \(\dfrac{15}{19}.\dfrac{2}{3}-\dfrac{7}{19}.\dfrac{2}{3}+\dfrac{8}{3}.\dfrac{17}{19}\\ =\dfrac{2}{3}.\left(\dfrac{15}{19}-\dfrac{7}{19}\right)+\dfrac{8}{3}.\dfrac{17}{19}\\ =\dfrac{2}{3}.\dfrac{8}{19}+\dfrac{8}{3}.\dfrac{17}{19}\\ =\dfrac{16}{57}+\dfrac{136}{57}\\ =\dfrac{152}{57}\\ =\dfrac{8}{3}\left(C\right)\)
C3. \(x=4\left(B\right)\)
C4. Gọi tổng số tiền ba đợt ủng hộ lần lượt là a, b, c (a, b, c ϵ N*).
Vì số tiền ủng hộ ba đợt lần lượt tỉ lệ với 7; 8; 9
Nên \(\dfrac{a}{7}=\dfrac{b}{8}=\dfrac{c}{9}\)
Vì tổng số tiền ủng hộ đợt hai và đợt ba nhiều hơn số tiền ủng hộ đợt một 80 tỉ
Nên \(\left(b+c\right)-a=80\)
Theo tính chất của dãy tỉ số bằng nhau
Ta có:
\(\dfrac{a}{7}=\dfrac{b}{8}=\dfrac{c}{9}=\dfrac{\left(b+c\right)-a}{\left(8+9\right)-7}=\dfrac{80}{10}=8\)
Do đó:
\(\dfrac{a}{7}=8=>a=8.7=>a=56\\ \dfrac{b}{8}=8=>b=8.8=>b=64\\ \dfrac{c}{9}=8=>c=8.9=>c=72\)
Vậy số tiền ủng hộ ba đợt lần lượt là: 56; 64; 72.
Số tiền ủng hộ đợt hai là 64 tỉ (B).
Thuc hien phep tinh;
a/ \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
b/ \(\left(\dfrac{1}{25}+\dfrac{1}{5}+1\right):\left(\dfrac{1}{25}-\dfrac{1}{5}-1\right)\)
c/ \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}\)+ \(\dfrac{0,6-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-0,16-\dfrac{4}{125}-\dfrac{4}{625}}\)
d/ \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)
c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
=1/4+3/4
=1
tinh
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3}{4}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}\)
\(=1\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
d. ĐKXĐ: $x>\frac{-2}{3}$
PT $\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{1}{2}\sqrt{9}.\sqrt{\frac{1}{3x+2}}+\sqrt{16}.\sqrt{\frac{1}{3x+2}}-5\sqrt{\frac{1}{4}}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{3}{2}\sqrt{\frac{1}{3x+2}}+4\sqrt{\frac{1}{3x+2}}-\frac{5}{2}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \frac{1}{3x+2}=1$
$\Leftrightarrow 3x+2=1$
$\Leftrightarrow x=-\frac{1}{3}$
Bài 1. Rút gọn phân thức
\(\dfrac{\left(3x+3\right)\left(3x-5\right)}{25-9x^2}\)
giúp mik nhanh nha
\(=\dfrac{3\left(x+1\right)\left(3x-5\right)}{-\left(3x-5\right)\left(3x+5\right)}=\dfrac{-3\left(x+1\right)}{3x+5}\)
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺