\(\dfrac{\left(-5\right)^{9x^2+1}}{25}=-125\)
\(\Leftrightarrow\left(-5\right)^{9x^2+1}=-5^5\)
\(\Leftrightarrow9x^2=4\)
hay \(x\in\left\{\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
\(\Leftrightarrow\left(-5\right)^{9x^2+1}=-125\cdot25=\left(-5\right)^5\\ \Leftrightarrow9x^2+1=5\Leftrightarrow x^2=\dfrac{4}{9}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
<=> \(\left(-5\right)^{9x^2+1}=-3125\)
<=> \(\left(-5\right)^{9x^2+1}=\left(-5\right)^5\)
<=> 9x2 + 1 = 5
<=> 9x2 + 1 - 5 = 0
<=> 9x2 - 4 = 0
<=> (3x - 2)(3x + 2) = 0
<=> \(\left[{}\begin{matrix}3x-2=0\\3x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)