Những câu hỏi liên quan
H24
Xem chi tiết
SD
5 tháng 4 2021 lúc 18:23

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

Bình luận (0)
SD
5 tháng 4 2021 lúc 18:27

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

Bình luận (0)
SD
5 tháng 4 2021 lúc 18:31

Ta có:

\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)

\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)

\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)

Bình luận (3)
TQ
Xem chi tiết
TL
31 tháng 7 2016 lúc 19:57

a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

\(\Leftrightarrow\)\(\frac{21\left(4x+3\right)-15\left(6x-2\right)}{105}=\frac{35\left(5x+4\right)+315}{105}\)

\(\Leftrightarrow21\left(4x+3\right)-15\left(6x-2\right)=35\left(5x+4\right)+315\)

\(\Leftrightarrow84x+63-90x+30=175x+140+315\)

\(\Leftrightarrow84x-90x-175x=140+315-63-30\)

\(\Leftrightarrow-181x=362\)

\(\Leftrightarrow x=-2\)

b)\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x+4\right)^2}{6}=0\)

\(\Leftrightarrow\)\(\frac{8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x+4\right)^2}{24}=0\)

\(\Leftrightarrow8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2+8x+16\right)=0\)

\(\Leftrightarrow8x^2-32x+32-12x^2+27+4x^2+32x+64=0\)

\(\Leftrightarrow8x^2-12x^2+4x^2-32x+32x=-64-27-32\)

\(\Leftrightarrow0x=-123\) (vô nghiệm)

Bình luận (0)
PL
Xem chi tiết
KB
6 tháng 2 2019 lúc 15:53

undefinedundefined

Bình luận (3)
TP
Xem chi tiết
NT
23 tháng 5 2022 lúc 12:42

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

Bình luận (0)
PL
Xem chi tiết
H24
Xem chi tiết
NM
28 tháng 8 2021 lúc 18:29

\(a,\) Đặt \(x^2+2x=a\), pt trở thành:

\(a^2-3a+2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=0\left(1\right)\\x^2+2x-2=0\left(2\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}\Delta\left(1\right)=4+4=8\\\Delta\left(2\right)=4+8=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{8}}{2}\\x=\dfrac{-2+\sqrt{8}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{12}}{2}\\x=\dfrac{-2+\sqrt{12}}{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\\x=-1+\sqrt{2}\\x=-1-\sqrt{3}\\x=-1+\sqrt{3}\end{matrix}\right.\)

\(b,\) Đặt \(x^2+x=b\), pt trở thành:

\(b\left(b+1\right)-6=0\\ \Leftrightarrow b^2+b-6=0\\ \Leftrightarrow\left[{}\begin{matrix}b=2\\b=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\x\in\varnothing\left[x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(d,x^4-2x^3+x=2\\ \Leftrightarrow x^4-2x^3+x-2=0\\\Leftrightarrow\left(x^3+1\right)\left(x-2\right)=0 \\ \Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x\in\varnothing\left[x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Bình luận (0)
AH
28 tháng 8 2021 lúc 18:40

Lời giải:

a. 

PT $\Leftrightarrow (x^2+2x)^2-(x^2+2x)-2[(x^2+2x)-1]=0$

$\Leftrightarrow (x^2+2x)(x^2+2x-1)-2(x^2+2x-1)=0$

$\Leftrightarrow (x^2+2x-1)(x^2+2x-2)=0$

$\Leftrightarrow x^2+2x-1=0$ hoặc $x^2+2x-2=0$

$\Leftrightarrow x=-1\pm \sqrt{2}$ hoặc $x=-1\pm \sqrt{3}$

b.

PT $\Leftrightarrow (x^2+x)^2+(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)^2-2(x^2+x)+3(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)(x^2+x-2)+3(x^2+x-2)=0$

$\Leftrightarrow (x^2+x-2)(x^2+x+3)=0$

$\Leftrightarrow x^2+x-2=0$ (chọn) hoặc $x^2+x+3=0$ (loại do $x^2+x+3=(x+0,5)^2+2,75>0$)

$\Leftrightarrow x=-1\pm \sqrt{3}$

c. Nghiệm khá xấu. Bạn coi lại đề.

d.

PT $\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x^3+1)(x-2)=0$

$\Leftrightarrow x^3+1=0$ hoặc $x-2=0$

$\Leftrightarrow x=-1$ hoặc $x=2$

 

Bình luận (0)
NT
28 tháng 8 2021 lúc 21:06

d: Ta có: \(x^4-2x^3+x=2\)

\(\Leftrightarrow x^4-2x^3+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
BT
Xem chi tiết
NT
25 tháng 1 2021 lúc 22:17

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

Bình luận (0)
KD
25 tháng 1 2021 lúc 22:10

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

Bình luận (0)
LG
Xem chi tiết
NT
30 tháng 8 2021 lúc 19:06

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

Bình luận (0)