Những câu hỏi liên quan
VL
Xem chi tiết
SN
19 tháng 8 2015 lúc 22:13

xét m tận cùng bằng 0 hoặc 5=>mn chia hết cho 5

xét m lẻ=>m4 có tận cùng bằng 1

=>24.m4+1 có tận cùng bằng 5

=>n có tận cùng bằng 5

=>mn chia hết cho 5

xét m chẵn=>m4 có tận cùng bằng 6

=>24.m4+1 có tận cùng bằng 5

=>n có tận cùng bằng 5

=>mn chia  hết cho 5

từ các dữ liệu trên=>mn chia hết cho 5

=>đpcm

Bình luận (0)
NB
Xem chi tiết
TL
23 tháng 7 2021 lúc 15:41

`(n^2+3n+1)^2-1`

`=(n^2+3n+1)-1^2`

`=(n^2+3n+1+1)(n^2+3n+1-1)`

`=(n^2+3n+2)(n^2+3n)`

`=(n+1)(n+2)n(n+3)`

`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.

`=> n(n+1)(n+2)(n+3) vdots 24`

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 10 2023 lúc 14:59

a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)

\(=3\left(2n+3\right)⋮3\)

b: Đặt A=\(\left(n-5\right)^2-n^2\)

\(A=\left(n-5\right)^2-n^2\)

\(=n^2-10n+25-n^2\)

\(=-10n+25=5\left(-2n+5\right)⋮5\)

\(A=\left(n-5\right)^2-n^2\)

\(=-10n+25\)

\(-10n⋮2;25⋮̸2\)

=>-10n+25 không chia hết cho 2

=>A không chia hết cho 2

Bình luận (0)
KL
29 tháng 10 2023 lúc 15:07

(n + 3)² - n² = n² + 6n + 9 - n²

= 6n + 9

= 3(3n + 3) ⋮ 3

Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ

--------

(n - 5)² - n² = n² - 10n + 25 - n²

= -10n + 25

= -5(2n - 5) ⋮ 5

Do -10n ⋮ 2

25 không chia hết cho 2

⇒ -10n + 25 không chia hết cho 2

Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2023 lúc 8:51
Để chứng minh rằng số m cũng là một bội số của 121, ta cần chứng minh rằng (16a+17b)(17a+16b) chia hết cho 11 và 121.

Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.

Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.

Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:

(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).

Mở ngoặc, ta được:

(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).

Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.

Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.

Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.

Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.

Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:

11m' = 272a^2 + 528ab + 272b^2.

Chia cả hai vế của phương trình cho 11, ta có:

m' = 24a^2 + 48ab + 24b^2.

Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.

Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.

Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:

Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,

trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.

Áp dụng công thức này vào bài toán, ta có:

Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.

Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2023 lúc 8:25

Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.

Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2

Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.

Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.

Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.

Ta có thể chia hai trường hợp để xét:

Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.

Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.

Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.

Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.

Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.

Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.

Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.

Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.

Bình luận (0)
KT
Xem chi tiết

Có: a+5b chia hết cho 7

=> 2.(a+5b)\(⋮\) 7

 \(\Leftrightarrow2a+10b⋮7\)

 \(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )

\(\Leftrightarrow2a+3b\)  chia hết cho 7 

=> điều phải chứng minh

Bình luận (0)
NN
Xem chi tiết
LP
19 tháng 6 2023 lúc 22:18

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

Bình luận (0)
CL
19 tháng 6 2023 lúc 21:29

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

Bình luận (0)
TG
Xem chi tiết
KY
10 tháng 9 2021 lúc 14:13

c

Bình luận (0)
NT
10 tháng 9 2021 lúc 14:13

Chọn C

Bình luận (0)
PA
Xem chi tiết