tìm x để X=2 x+1/x-3 có giá trị là một số nguyên
Bài 1: Cho A = x-3/x+3. Tìm giá trị của x để:
a) A là một phân số
b) A là một số nguyên
Bài 2: Tìm tất cả các số nguyên x để:
a) Phân số x+1/x-2 có giá trị là một số nguyên
b) Phân số 12x+1/30x+2 là phân số tối giản
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
Tìm x để
a) A=\(\dfrac{x^2+3x-1}{x+2}\) có giá trị là số nguyên (x ϵ Z)
b) B=\(\dfrac{x^2+x+3}{x+1}\) có giá trị là số nguyên (x ϵ Z)
a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2
=>-3 chia hết cho x+2
=>x+2 thuộc {1;-1;3;-3}
=>x thuộc {-1;-3;1;-5}
b: B nguyên khi x^2+x+3 chia hết cho x+1
=>3 chia hết cho x+1
=>x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-2;2;-4}
Tìm số nguyên x để các phân số có giá trị là một số nguyên
5/x+1
x+3/x-2
a) để\(\frac{5}{x+1}\)là số nguyên
<=> x + 1 E Ư(5) (x khác -1)
<=> x + 1 E {1;-1;5.-5}
x + 1 =1 => x = 2
x + 1 = -1 => x = 0
x + 1 = 5 => x = 6
x + 1 = -5 => x = -4
a) để \(\frac{5}{x+1}\)là số nguyên
< = > x + 1 E Ư ( x khác -1 )
< = > x + 1 E (1;-1;5;-5)
x + 1 = 1 = > x = 2
x + 1 = -1 = > x = 0
x + 1 = 5 = > x = 6
x + 1 = -5 = > x = 4
Đáp số :.................
a) Để \(\frac{5}{x+1}\)là số nguyên thì: \(5\) \(⋮\)\(x+1\)
\(\Rightarrow\)\(5\in\)ƯC(\(x+1\)) = { 1 ; -1 ; 5 ; - 5 }
Ta có:
\(x+1=1\)\(\Rightarrow\)\(x=0\)
\(x+1=-1\)\(\Rightarrow\)\(x=-2\)
\(x+1=5\)\(\Rightarrow\)\(x=4\)
\(x+1=-5\)\(\Rightarrow\)\(x=-6\)
bài 1. cho biểu thức A = \(\dfrac{x^3+2x^2+x}{x^3-x}\)
a) Tìm x để A được xác định.
b) Rút gọn A.
c) Tìm x để A = 2.
d) Tìm giá trị nguyên của x để giá trị tương ứng của A là một số nguyên
a/
ĐKXĐ: \(x\ne\left\{-1;0;1\right\}\)
b.
\(A=\dfrac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c.
\(A=2\Rightarrow\dfrac{x+1}{x-1}=2\)
\(\Rightarrow x+1=2x-2\)
\(\Rightarrow x=3\) (thỏa mãn)
d.
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(A\) nguyên \(\Leftrightarrow\dfrac{2}{x-1}\) nguyên
\(\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=0\left(ktm\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy \(x=\left\{2;3\right\}\) thì A nguyên
Tìm số nguyên x để A có giá trị là một số nguyên, biết A=x+3/x-2
https://olm.vn/hoi-dap/question/522644.html
Bạn tham khảo nha
Đề bài hơi khác
Ta có : \(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
Vậy để A là số nguyên thì \(5⋮x-2\Leftrightarrow x-2\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau :
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy khi \(x\in\left(3;1;7;-3\right)\)thì A là 1 số nguyên
A= \(\frac{x+3}{x-2}\)= \(\frac{x-2+5}{x-2}\)= 1+\(\frac{5}{x-2}\). Vậy để A nguyên thì \(\frac{5}{x-2}\)phải nguyên. Để \(\frac{5}{x-2}\)nguyên thì 5 phải chia hết cho x-2 hay x-2 thuộc ước của 5
từ đó suy ra x-2= 1,-1,5 hoặc -5
\(\Rightarrow\)x=3,1,7,-3
Tìm giá trị nguyên của x để mỗi biểu thức sau có giá trị là một số nguyên:
a) A= 2x^3+x^2+4x+5 / 2x+1
b) B= x^3 / 6+x^2 / 2+x^3
cho\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)tìm số nguyên x để A có giá trị là một số nguyên
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
mà \(\sqrt{x}-3⋮\sqrt{x}-3\)
nên \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
mà \(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}\in\left\{1;2;4;5;7\right\}\)
hay \(x\in\left\{1;4;16;25;49\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{1;4;16;25;49\right\}\)
Cho A=(√x+1)/(√x-3). Tìm số nguyên x để A có giá trị là một số nguyên
1. Tìm những giá trị nguyên dương của x thỏa mãn:
\(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
2. Tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
\(A=\frac{x+5}{x+1}\)
3. Tìm \(x,y\in Z\), biết: ( x + 4 )( y + 3 ) = 3
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....