Cho 2x+y=6 tìm giá trị nhỏ nhất của M=5x^2+y^2
Tìm giá trị nhỏ nhất của biểu thức:
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(M=5x^2+y^2-2x+2y+2xy+2004\)
\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)
\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)
\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y
=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(M_{min}=2002\)
Cho x>0 ,y>0 và x+y =2 . Tìm giá trị nhỏ nhất của biểu thức :
P = 2x^2 -y^2 -5x +1/x +2020
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Cho biểu thức : M = x2 – 5x + y2 + xy – 4y + 2019.
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
tìm giá trị lớn nhất của biểu thức
a) 2x-2xy-2x2-y2
tìm giá trị nhỏ nhất của biểu thức
a) (x-1)(x+2)(x+3)(x+6)
b) 5x2+y2-6x+5y+1
c) x2-2x+y-4y+6
Cho 2x+y=6
a)Tìm giá trị nhỏ nhất của A=\(2x^2+y^2\)
b) Tìm giá trị lớn nhất của B=xy
\(2x+y=6\Leftrightarrow x=\frac{6-y}{2}\)
a) \(A=2x^2+y^2=2\left(\frac{6-y}{2}\right)^2+y^2=\frac{2\left(6-y\right)^2}{4}+y^2\)
\(=\frac{2\left(36-12y+y^2\right)}{4}+y^2\)
\(=\frac{36-12y+y^2}{2}+\frac{2y^2}{2}=\frac{3y^2-12y+36}{2}\)
\(=\frac{3\left(y-2\right)^2+24}{2}\ge\frac{24}{2}=12\)(dấu "=" xảy ra khi y =2)
Vậy Min A = 12 khi y = 2
b) \(6=2x+y\ge2\sqrt{2xy}=2\sqrt{2B}\)
Suy ra \(8B\le36\Leftrightarrow B\le\frac{9}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x=y\\2x+y=6\end{cases}}\Leftrightarrow2x=y=3\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Vậy Max \(B=\frac{9}{2}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức
P= \(2x^2+y^2+2xy+5x+y+\dfrac{37}{4}\)
Cần gấp ạ
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
tìm giá trị nhỏ nhất của biểu thức A=5x^2+y^2+4xy-2x-2y+2020
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
tìm giá trị nhỏ nhất của biểu thức A=5x^2+y^2+4xy-2x-2y+2020