2x2 - (m2 - m + 1)x + 2m2 - 3m - 5 = 0. Tìm các giá trị của m để phương trình vô nghiệm
Gọi n là số các giá trị của tham số m để bất phương trình 2 m - 4 x 3 + 2 x 2 + m 2 - 3 m + 2 x 2 + 2 x - m 3 - m 2 - 2 m x + 2 < 0 vô nghiệm. Giá trị của n bằng:
A. 5
B. 1
C. 4
D. 2
Gọi n là số các giá trị của tham số m để bất phương trình ( 2 m - 4 ) ( x 3 + 2 x 2 ) + ( m 2 - 3 m + 2 ) - ( m 3 – m 2 - 2 m ) ( x + 2 ) < 0 vô nghiệm. Giá trị của n bằng
A. 5
B. 1
C. 4
D. 2
Cho phương trình 2x2 - (4m + 3)x + 2m2 - 1 = 0 . Tìm các giá trị của m để phương trình:
a) Có hai nghiệm phân biệt?
b) Có nghiệm kép; tìm nghiệm kép đó?
c) Vô nghiệm?
d) có nghiệm x = -1? Tìm nghiệm còn lại?
a: Δ=(4m+3)^2-4*2*(2m^2-1)
=16m^2+24m+9-16m^2+8
=24m+17
Để phương trình có hai nghiệm phân biệt thì 24m+17>0
=>m>-17/24
b: Để phương trìh có nghiệm kép thì 24m+17=0
=>m=-17/24
c: Để phương trình vô nghiệm thì 24m+17<0
=>m<-17/24
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m:
a. mx2 + (2m – 1)x + m + 2 = 0 b. 2x2 - (4m +3)x + 2m2 - 1 = 0
c. x2 – 2(m + 3)x + m2 + 3 = 0 d. (m + 1)x2 + 4mx + 4m +1 = 0
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
tìm m để phương trình (m+1)x2 + 2(m+3)x - m+2 =0 có 2 nghiệm phân biệt
tìm các giá trị của tham số m để bất phương trình (m2 - 4m -5)x2 +2(m-5)x-1\(\ge0\) vô nghiệm
a.
Pt có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\)
\(\Rightarrow m\ne-1\)
b.
BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x
- Với \(m=-1\) ko thỏa mãn
- Với \(m=5\) thỏa mãn
- Với \(m\ne\left\{-1;5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)
Kết hợp lại ta được: \(2< m\le5\)
Tìm tổng các giá trị của m để phương trình ( m – 2 ) x 2 – ( m 2 + 1 ) x + 3 m = 0 có nghiệm x = −3
A. −5
B. −4
C. 4
D. 6
Thay x = −3 vào phương trình
(m – 2)x2 – (m2 + 1)x + 3m = 0, ta có:
(m – 2) (−3)2 – (m2 + 1) (−3) + 3m = 0
⇔ 9m – 18 + 3m2 + 3 + 3m = 0
⇔ 3m2 + 12m – 15 = 0
⇔ m2 + 4m – 5 = 0
⇔ m2 – m + 5m – 5 = 0
⇔ m (m – 1) + 5 (m – 1) = 0
⇔ (m – 1) (m + 5) = 0 ⇔ m = 1 m = − 5
Suy ra tổng các giá trị của m là (−5) + 1 = −4
Đáp án cần chọn là: B
Tìm tất cả các giá trị của m để bắt đầu phương trình sau vô nghiệm:
(m +1)X2 - 2(m - 1)X + 3m - 3 >0
TH1: m=-1
BPT sẽ là:
-2(-1-1)x-3-3>0
=>4x-6>0
=>x>6/4
=>Loại
TH2: m<>-1
Δ=(2m-2)^2-4(m+1)(3m-3)
=4m^2-8m+4-4(3m^2-3)
=4m^2-8m+4-12m^2+12
=-8m^2-8m+16
Để BPT vô nghiệm thì -8m^2-8m+16<=0 và m+1<0
=>m^2+m-2>=0 và m<-1
=>(m+2)(m-1)>=0 và m<-1
=>(m>=1 hoặc m<=-2) và m<-1
=>m<=-2
Cho phương trình m 2 - 3 m + 2 x + m 2 + 4 m + 5 = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình đã cho có nghiệm đúng với mọi x thuộc R.
A. m = −2.
B. m = −5.
C. m = 1.
D. Không tồn tại.
Phương trình đã cho nghiệm đúng với hay phương trình có vô số nghiệm khi
m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅
Đáp án cần chọn là: D
Tìm tất cả các giá trị thực của tham số m để phương trình sau có nghiệm: 2 x 2 + x + m 2 − 2 m = 0 .
A. m = 1 2 .
B. m = 3
C. m = 1
D. m = 3 4 .
Đáp án C
Đặt t = x ≥ 0 , khi đó PT đã cho trở thành 2 t 2 + t + m 2 − 2 m = 0 ⇔ 2 t 2 + t = − m 2 + 2 m
Hàm số y = 2 t 2 + t đồng biến trên 0 ; + ∞ .
Để PT đã cho có nghiệm thì − m 2 + 2 m ≥ y 0 ⇔ − m 2 + 2 m ≥ 1 ⇔ m − 1 2 ≤ 0 ⇔ m = 1
tìm tất cả giá trị của m để bất phương trình -2x2 +<m-1>x+m2-1 < hoặc bằng 0 có nghiệm đúng với xϵR
a = -2 < 0 rồi, xét Δ không dương nữa là xong