Những câu hỏi liên quan
HL
Xem chi tiết
NT
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Bình luận (0)
NH
Xem chi tiết
NT
31 tháng 5 2023 lúc 11:02

A=3(x^2+2/3x-1)

=3(x^2+2*x*1/3+1/9-10/9)

=3(x+1/3)^2-10/3>=-10/3

Dấu = xảy ra khi x=-1/3

\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)

Dấu = xảy ra khi x=-1/2

Bình luận (1)
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
NA
Xem chi tiết
NM
Xem chi tiết
PQ
Xem chi tiết
DK
Xem chi tiết
H24
5 tháng 6 2016 lúc 20:00

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

Bình luận (0)
MM
Xem chi tiết
LL
1 tháng 9 2021 lúc 21:53

a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)

b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)

\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)

c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)

Bình luận (0)
NT
1 tháng 9 2021 lúc 21:54

b: ta có: \(-x^2+5x+4\)

\(=-\left(x^2-5x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Bình luận (0)
BT
1 tháng 9 2021 lúc 21:55

undefined

Bình luận (0)
PL
Xem chi tiết
AH
24 tháng 7 2021 lúc 0:01

Lời giải:

$D=(x+1)(x^2-4)(x+5)+2014$

$=(x+1)(x+2)(x-2)(x+5)+2014$
$=(x^2+3x+2)(x^2+3x-10)+2014$

$=t(t-12)+2014$ (đặt $x^2+3x+2=t$)

$=t^2-12t+2014=(t-6)^2+1978$

$=(x^2+3x-4)^2+1978\geq 1978$

Vậy gtnn của biểu thức là $1978$. Giá trị này đạt tại $x^2+3x-4=0$

$\Leftrightarrow x=1$ hoặc $x=-4$

Bình luận (0)
NK
Xem chi tiết
TH
13 tháng 1 2021 lúc 15:45

Ta có: \(B-\dfrac{2}{3}=\dfrac{x^2+1}{x^2-x+1}-\dfrac{2}{3}=\dfrac{\left(x-1\right)^2}{3\left(x^2-x+1\right)}=\dfrac{\left(x-1\right)^2}{3\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\Rightarrow B\ge\dfrac{2}{3}\).

Đẳng thức xảy ra khi x = 1.

Vậy Min B = \(\frac{2}{3}\) khi x = 1.

Bình luận (0)