\(\int_0^1\)\(\dfrac{2x^3-3x^2+x-4}{x^2+2x+1}dx\)
1/ I=\(\int_{-2}^2\left|x^2-1\right|dx\)
2/ I= \(\int_1^e\sqrt{x}.lnxdx\)
3/ I= \(\int_0^{\dfrac{\pi}{2}}\left(e^{sinx}+cosx\right)cosxdx\)
4/ I= \(\int_0^{\dfrac{pi}{2}}\dfrac{sin2x}{\sqrt{cos^2x+4sin^2x}}dx\)
5/ I= \(\int_0^{\dfrac{\pi}{4}}\sqrt{2}cos\sqrt{x}dx\)
6/ I= \(\int_1^{\sqrt{e}}\dfrac{1}{x\sqrt{1-ln^2x}}dx\)
7/ I= \(\int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}\dfrac{sin^6x+cos^6x}{6^x+1}dx\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
3/ \(I=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx+\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
Xét \(A=\int\limits^{\dfrac{\pi}{2}}_0e^{\sin x}.\cos x.dx\)
\(t=\sin x\Rightarrow dt=\cos x.dx\Rightarrow A=\int\limits^{\dfrac{\pi}{2}}_0e^t.dt=e^{\sin x}|^{\dfrac{\pi}{2}}_0\)
Xét \(B=\int\limits^{\dfrac{\pi}{2}}_0\cos^2x.dx\)
\(=\int\limits^{\dfrac{\pi}{2}}_0\dfrac{1+\cos2x}{2}.dx=\dfrac{1}{2}.\int\limits^{\dfrac{\pi}{2}}_0dx+\dfrac{1}{2}\int\limits^{\dfrac{\pi}{2}}_0\cos2x.dx\)
\(=\dfrac{1}{2}x|^{\dfrac{\pi}{2}}_0+\dfrac{1}{2}.\dfrac{1}{2}\sin2x|^{\dfrac{\pi}{2}}_0\)
I=A+B=...
Tính các tích phân sau:
a) \(\int_0^1x^3\sqrt{1-x^2}dx\)
b) \(\int_1^2\dfrac{dx}{x^2-2x+2}\)
c) \(\int_1^2\dfrac{dx}{\sqrt{4-x^2}}\)
d) \(\int_0^1x\sqrt{x^2+1}dx\)
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
c.
\(\int\limits^2_1\dfrac{dx}{\sqrt{4-x^2}}\)
Đặt \(x=2sinu\Rightarrow dx=2cosu.du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=\dfrac{\pi}{6}\\x=2\Rightarrow u=\dfrac{\pi}{2}\end{matrix}\right.\)
\(I=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{\sqrt{4-4sin^2u}}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}\dfrac{2cosu.du}{2cosu}=\int\limits^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}du\)
\(=u|^{\dfrac{\pi}{2}}_{\dfrac{\pi}{6}}=\dfrac{\pi}{3}\)
1.\(\int_0^{\dfrac{\pi}{4}}\dfrac{\sin2x}{\sqrt{1+\cos^4x}}dx\)
2.\(\int_0^{ln3}\dfrac{e^x}{\sqrt{e^x+1}+1}dx\)
3.\(\int_1^2\dfrac{3x+1}{\sqrt{x^2+3x+9}}dx\)
4.\(\int\limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}\sin x\sqrt{3+\cos^6x}dx\)
I=\(\int_0^3\) \(\dfrac{2x^2+x-1}{\sqrt{x+1}}dx\)
\(t=\sqrt{x+1}>0\Rightarrow x=t^2-1\)
\(\Rightarrow dt=\dfrac{1}{2\sqrt{x+1}}dx=\dfrac{1}{2t}dx\Rightarrow dx=2tdt\)
\(\Rightarrow I=\int\dfrac{2t^4-t^2-1}{t}.2tdt=2\int\left(2t^4-t^2-1\right)dt\)
Đến đây bạn làm bình thường r thay t bằng căn(x+1) vô là được
I=\(\int_0^1\)\(\frac{dx}{\sqrt{3+2x-x^2}}\)
J=\(\int_0^1\)xln(2x+1)dx
K=\(\int_0^1\)\(ln\left(x^3-3x+2\right)dx\)
tính các tích phân
1.\(\int_0^1\dfrac{4x+2}{x^2+x+1}dx\)
2.\(\int_0^1\dfrac{4x+1}{\left(2-x\right)^4}dx\)
3.\(\int_0^1\dfrac{x^2+1}{\left(x^3+3x\right)^3}dx\)
Câu 1:
Ta có \(I_1=\int ^{1}_{0}\frac{4x+2}{x^2+x+1}dx=2\int ^{1}_{0}\frac{2x+1}{x^2+x+1}dx\)
\(=2\int ^{1}_{0}\frac{d(x^2+x+1)}{x^2+x+1}=2.\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln |x^2+x+1|=2\ln 3\)
Câu 2:
\(I_2=\int ^{1}_{0}\frac{4x+1}{(2-x)^4}dx=\int ^{1}_{0}\frac{4(x-2)+9}{(2-x)^4}dx\)
\(=4\int ^{1}_{0}\frac{dx}{(x-2)^3}+9\int \frac{dx}{(2-x)^4}=4\int ^{1}_{0}\frac{d(x-2)}{(x-2)^3}-9\int ^{1}_{0}\frac{d(2-x)}{(2-x)^4}\)
\(=4\int ^{-1}_{-2}\frac{dt}{t^3}-9\int ^{1}_{2}\frac{dk}{k^4}\) với \(x-2=t; 2-x=k\)
\(=4.\left.\begin{matrix} -1\\ -2\end{matrix}\right|\frac{t^{-3+1}}{-3+1}-9.\left.\begin{matrix} 1\\ 2\end{matrix}\right|\frac{k^{-4+1}}{-4+1}=\frac{9}{8}\)
Câu 3:
Phân số \(\frac{x^2+1}{(x^3+3x)^3}\) không xác định trên \([0;1]\); hàm không liên tục nên không có tích phân.
Tính tích phân sau: \(\int_0^1\frac{x^4-2x^3-4x^2+x-2}{x^2-2x-3}dx\)
1, \(\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
2, \(\int\dfrac{2x+1}{x^4+2x^2+3x^2+2x-3}dx\)
3, \(\int\dfrac{sin\sqrt[3]{x}}{\sqrt[3]{x^2}}dx\)
4, \(\int\dfrac{dx}{sin^2x+2cos^2x}\)
5, \(\int\dfrac{sinx+cosx}{3+sin2x}dx\)
\(I=\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
Đặt \(x^4=t\Rightarrow x^3dx=\dfrac{1}{4}dt\Rightarrow I=\dfrac{1}{4}\int\dfrac{dt}{\left(t^2-2\right)^2}=\dfrac{1}{4}\int\dfrac{dt}{\left(t-\sqrt{2}\right)^2\left(t+\sqrt{2}\right)^2}\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)^2dt=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{2}{\left(t+\sqrt{2}\right)\left(t-\sqrt{2}\right)}\right)dt\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)\right)dt\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|\right)+C\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{x^4-\sqrt{2}}-\dfrac{1}{x^4+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{x^4-\sqrt{2}}{x^4+\sqrt{2}}\right|\right)+C\)
2/ \(I=\int\dfrac{\left(2x+1\right)dx}{\left(x^2+x-1\right)\left(x^2+x+3\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{x^2+x-1}-\dfrac{1}{x^2+x+3}\right)\left(2x+1\right)dx\)
\(=\dfrac{1}{4}\int\left(\dfrac{2x+1}{x^2+x-1}-\dfrac{2x+1}{x^2+x+3}\right)dx\)
\(=\dfrac{1}{4}\left(\int\dfrac{d\left(x^2+x-1\right)}{x^2+x-1}-\int\dfrac{d\left(x^2+x+3\right)}{x^2+x+3}\right)\)
\(=\dfrac{1}{4}ln\left|\dfrac{x^2+x-1}{x^2+x+3}\right|+C\)
3/ Đặt \(\sqrt[3]{x}=t\Rightarrow x=t^3\Rightarrow dx=3t^2dt\)
\(\Rightarrow I=\int\dfrac{3t^2.sint.dt}{t^2}=3\int sint.dt=-3cost+C=-3cos\left(\sqrt[3]{x}\right)+C\)
4/ \(I=\int\dfrac{dx}{1+cos^2x}=\int\dfrac{\dfrac{1}{cos^2x}dx}{\dfrac{1}{cos^2x}+1}\)
Đặt \(t=tanx\Rightarrow\left\{{}\begin{matrix}dt=\dfrac{1}{cos^2x}dx\\\dfrac{1}{cos^2x}=1+tan^2x=1+t^2\end{matrix}\right.\)
\(\Rightarrow I=\int\dfrac{dt}{1+t^2+1}=\int\dfrac{dt}{t^2+2}=\dfrac{1}{2}\int\dfrac{dt}{\left(\dfrac{t}{\sqrt{2}}\right)^2+1}\)
\(=\dfrac{1}{2}.\sqrt{2}.arctan\left(\dfrac{t}{\sqrt{2}}\right)+C=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{tanx}{\sqrt{2}}\right)+C\)
5/ \(I=\int\dfrac{sinx+cosx}{4+2sinx.cosx-sin^2x-cos^2x}dx=\int\dfrac{sinx+cosx}{4-\left(sinx-cosx\right)^2}dx\)
Đặt \(sinx-cosx=t\Rightarrow\left(cosx+sinx\right)dx=dt\)
\(\Rightarrow I=\int\dfrac{dt}{4-t^2}=-\int\dfrac{dt}{\left(t-2\right)\left(t+2\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{t+2}-\dfrac{1}{t-2}\right)dt\)
\(=\dfrac{1}{4}ln\left|\dfrac{t+2}{t-2}\right|+C=\dfrac{1}{4}ln\left|\dfrac{sinx-cosx+2}{sinx-cosx-2}\right|+C\)
Ơ bài 1 nhầm số 4 thành số 2 rồi, bạn sửa lại 1 chút nhé :D
Còn 1 cách làm khác nữa là lượng giác hóa
Đặt \(x^4=2sint\Rightarrow x^3dx=\dfrac{1}{2}cost.dt\)
\(\Rightarrow I=\dfrac{1}{2}\int\dfrac{cost.dt}{\left(4sin^2t-4\right)^2}=\dfrac{1}{32}\int\dfrac{cost.dt}{cos^4t}=\dfrac{1}{32}\int\dfrac{dt}{cos^3t}\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{cost}\\dv=\dfrac{dt}{cos^2t}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{sint.dt}{cos^2t}\\v=tant\end{matrix}\right.\)
\(\Rightarrow32I=\dfrac{tant}{cost}-\int\dfrac{tant.sint.dt}{cos^2t}=\dfrac{sint}{cos^2t}-\int\dfrac{sin^2t.dt}{cos^3t}\)
\(=\dfrac{sint}{1-sin^2t}-\int\dfrac{1-cos^2t}{cos^3t}dt=\dfrac{sint}{1-sin^2t}-\int\dfrac{dt}{cos^3t}+\int\dfrac{1}{cosx}dx\)
Chú ý rằng \(\int\dfrac{dt}{cos^3t}=32I\)
\(\Rightarrow32I=\dfrac{sint}{1-sin^2t}-32I+\int\dfrac{cost.dt}{cos^2t}\)
\(\Rightarrow64I=\dfrac{sint}{1-sin^2t}-\int\dfrac{d\left(sint\right)}{sin^2t-1}=\dfrac{sint}{1-sin^2t}-\dfrac{1}{2}ln\left|\dfrac{sint-1}{sint+1}\right|+C\)
\(\Rightarrow I=\dfrac{1}{64}\left(\dfrac{2x^4}{4-x^8}-\dfrac{1}{2}ln\left|\dfrac{x^4-2}{x^4+2}\right|\right)+C\)
\(\int_0^{\frac{\Pi}{2}}c\text{os}^2x\left(1-sin^3x\right)dx\)
2) \(\int_0^{\frac{\Pi}{4}}\frac{sin\left(x-\frac{\Pi}{4}\right)}{sin2x+2\left(1+s\text{inx}+c\text{ox}\right)}dx\)
hộ mk vs nha
1)
\(I=\int\left(cos^2x-cos^2x\cdot sin^3x\right)dx\\ =\int cos^2x\cdot dx-\int cos^2x\cdot sin^3x\cdot dx\\ =\frac{1}{2}\int\left(cos2x+1\right)dx+\int cos^2x\left(1-cos^2x\right)d\left(cosx\right)\\ =\frac{1}{4}sin2x+\frac{1}{2}+\frac{cos^3x}{3}-\frac{cos^5x}{5}+C\)
....
2) Xét riêng mẫu số:
\(sin2x+2\left(1+sinx+cosx\right)\\ =\left(sin2x+1\right)+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx\right)^2+2\left(sinx+cosx\right)+1\\ =\left(sinx+cosx+1\right)^2\\ =\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2\)
Khi đó:
\(I_2=\int\frac{sin\left(x-\frac{\pi}{4}\right)}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}dx\\ =-\frac{1}{\sqrt{2}}\int\frac{d\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]}{\left[\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1\right]^2}\\ =\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}cos\left(x-\frac{\pi}{4}\right)+1}+C=\frac{1}{2cos\left(x-\frac{\pi}{4}\right)+1}\)
...