A=1/3^2+1/4^2+1/5^2+1/6^2+.......Biết tổng A có 2012 số hạng.Chứng tỏ rằng A<1/2
1. Chứng tỏ rằng M là số chính phương biết rằng :
M = 1 + 3 + 5 ... + [2n -1] [với n thuộc N]
2. Tính tổng :
a) A = 1^2 + 2^2 + 3^2 + ... + 10^2
b) Tính theo cách hợp lí tổng :
B= 5^2 + 10^2 + 15^2 + ... + 50^2
3. Tìm n thuộc N biết :
a) 4^n = 256
b) 6^20 . 6^4n = 6^200
chứng tỏ rằng A<1 biết
A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2 <1
đặt B=1/1*2+1/2*3+...+1/2011*2012
ta có:A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2<B=1/1*2+1/2*3+...+1/2011*2012 (1)
B=1/1*2+1/2*3+...+1/2011*2012
=1-1/2+1/2-1/3+...+1/2011-1/2012
=1-1/2012<1 (2)
từ (1) và (2) =>A<1
các bạn ơi giúp mình với mình cần gấp lắm
1/ Cho số b =1*2*3*4*5*6*7+8 Hỏi b có chia hết cho 3 ,cho 8 không ? Vì sao
2/Cho A= 1+4+4^2+4^3+4^4+4^5+4^6+4^7+4^8.Hỏi A có chia hết cho5 không ,cho 7 không ?vì sao
3/ Cho một số có 3 chữ số .Biết rằng tổng các chữ số hàng trăm và hàng đơn vị bằng chữ số hàng chục. Chứng tỏ rằng số đó chia hết cho 11
Cho A=1/3^2 + 1/4^2 + ... + 1/2012^2. Chứng tỏ rằng A < 1
Đọc kĩ đề 1 tí là làm dc ngay:
\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
\(A< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(A< \dfrac{1}{2}-\dfrac{1}{2012}< 1\)
Vậy \(A< 1\)
A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
Ta có :
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2012^2}< \dfrac{1}{2011.2012}\)
=> A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\) (1)
Biến đổi vế trái :
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{2012}\)
= \(\dfrac{1005}{2012}\)< 1 (2)
Từ (1) và (2), suy ra:
A < 1
1.Cho 99 số nguyên trong đó tổng của 14 số bất kì là một số dương.Chứng tỏ rằng tổng của 99 số đó là số dương
2.a,So sánh A và B biết : A=\(\frac{2}{9^4}+\frac{7}{9^5}\) và B=\(\frac{7}{9^4}+\frac{2}{9^5}\)
b,Cho A=(-5)2+(-5)3+(-5)4+...+(-5)2014.A có chia hết cho 21 không? Vì sao?
3,Cho x=22010-22009-22008-...-2-1.Tính 2012x
Bài 1 : Tích A = 2 nhân 2^2 nhân 2^3 nhân .... nhân 2^10 nhân 5^2 nhân 5^4 nhân 5^6 nhân ..... nhân 5^14 có tận cùng nằng bao nhiêu chữ số 0 ?
BÀi 2 : Cho A = 1/2 nhân ( 7 ^2012^2015 - 3^92^94) . Chứng minh rằng : A là số tự nhiên chia hết cho 5
Bài 3: Tìm chữ số hàng đơn vị của số : A =17^2012 +11^2012- 7^2012
Bài 4 Tìm 2 chữ số tận cùng của 5^51
1. chứng tỏ rằng tổng mỗi tổng của hiệu sau là 1 số chính phương:
a) 3^2 +4^2 b)13^ - 5^2 c)1^5 +2^3 + 3^3 +4^3
2. tìm x biết:
a) x^10 = 1^x b)( 2x - 15)^5 = (2x - 15)^3 c) x^10 = x
Câu 2:
a: \(x^{10}=1^x\)
\(\Leftrightarrow x^{10}=1\)
=>x=1 hoặc x=-1
b: \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Leftrightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-15\right)^3\cdot\left(2x-16\right)\left(2x-14\right)=0\)
hay \(x\in\left\{\dfrac{15}{2};8;7\right\}\)
c: \(x^{10}=x\)
\(\Leftrightarrow x\left(x^9-1\right)=0\)
=>x=0 hoặc x=1
a/Tính tổng
M=1/5^0+1/5^1+1/5^2+...+1/5^2012
b/Chứng minh rằng 2012^2013-1 và 2012^2013+1 không cùng là số nguyên tố
c/Chứng minh rằng 2+2^2+2^3+...+2^2009+2^2010 chia hết cho 42
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
1)tìm số tự nhiên biết rằng số đó chia 9 dư 5, chia 7 dư 4 và chia 5 dư 3
2)cho A = 1+2012+2012^2+...+2012^72
B = 2012^73-1
so sánh A và B