Ôn tập toán 6

DT

Cho A=1/3^2 + 1/4^2 + ... + 1/2012^2. Chứng tỏ rằng A < 1

AT
27 tháng 3 2017 lúc 21:37

Đọc kĩ đề 1 tí là làm dc ngay:

\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)

\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)

\(A< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(A< \dfrac{1}{2}-\dfrac{1}{2012}< 1\)

Vậy \(A< 1\)

Bình luận (0)
NN
27 tháng 3 2017 lúc 22:27

A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
Ta có :
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2012^2}< \dfrac{1}{2011.2012}\)
=> A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\) (1)
Biến đổi vế trái :
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{2012}\)
= \(\dfrac{1005}{2012}\)< 1 (2)
Từ (1) (2), suy ra:
A < 1

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
PJ
Xem chi tiết
TY
Xem chi tiết
DB
Xem chi tiết
NV
Xem chi tiết