Những câu hỏi liên quan
DN
Xem chi tiết
LD
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Bình luận (0)
 Khách vãng lai đã xóa
LD
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
HD
4 tháng 8 2021 lúc 8:24

undefinedHình như là vậy á 

              Chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
NT
3 tháng 11 2019 lúc 20:51

 Ta có : \(\left|x-2019\right|\ge x-2019\). Dấu "=" khi \(x-2019\ge0\)

             \(\left|x-2020\right|=\)\(\left|2020-x\right|\ge2020-x\).Dấu "=" khi \(2020-x\ge0\)

=> \(\left|x-2019\right|+\left|2020-x\right|\)\(\ge x-2019+2020-x\)

=> \(\left|x-2019\right|+\left|x-2020\right|+2\)\(\ge3\)

hay \(A\ge3\)

\(MinA=3\Leftrightarrow\)\(\hept{\begin{cases}x-2019\ge0\\2020-x\ge0\end{cases}}\)\(\Leftrightarrow2019\le x\le2020\)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
NL
9 tháng 4 2019 lúc 16:58

\(P=\left|x-1\right|+\left|2010-x\right|+\sqrt{2019}\)

\(P\ge\left|x-1+2010-x\right|+\sqrt{2019}=2009+\sqrt{2019}\)

\(\Rightarrow P_{min}=2009+\sqrt{2019}\) khi \(\left\{{}\begin{matrix}x-1\ge0\\2010-x\ge0\end{matrix}\right.\) \(\Rightarrow1\le x\le2010\)

Bình luận (0)
DN
Xem chi tiết
NH
17 tháng 11 2019 lúc 21:42

Bài 2:

\(C=\frac{2019}{\sqrt{x}+3}\)

Vì C có tử = 2019 ko đổi

\(\Rightarrow\) Để C đạt max thì mẫu phải đạt min

+Có:\(\sqrt{x}\ge0với\forall x\\ \Rightarrow\sqrt{x}+3\ge3\)

+Dấu ''='' xảy ra khi ......tự lm :))

\(\Rightarrow\)Mẫu đạt min = 3 khi x=...

\(\Rightarrow\)C max = ... khi x=....

Bình luận (0)
 Khách vãng lai đã xóa
NH
17 tháng 11 2019 lúc 21:46

BÀi 1:

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\\ \Leftrightarrow B=\left|x-2018\right|+\left|2020-x\right|+\left|x-2019\right|\\ \Leftrightarrow B=2+\left|x-2019\right|\\ \Leftrightarrow B\ge2\)

+Dấu ''='' xảy ra khi

\(\left\{{}\begin{matrix}x-2018\ge0\\x-2019\ge0\\x-2020\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=2019\)

+Vậy \(B_{min}=2\) khi \(x=2019\)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H24
22 tháng 10 2019 lúc 20:04

toi ko bt

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
NL
10 tháng 4 2019 lúc 17:08

ĐKXĐ: \(x\ge2019\)

\(P=\left|x-1\right|+\left|2020-x\right|+\sqrt{x-2019}\)

\(P\ge\left|x-1+2020-x\right|+\sqrt{x-2019}=2019+\sqrt{x-2019}\ge2019\)

\(\Rightarrow P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-1\ge0\\2020-x\ge0\\\sqrt{x-2019}=0\end{matrix}\right.\) \(\Rightarrow x=2019\)

Bình luận (0)
IA
Xem chi tiết
CT
Xem chi tiết