tìm x, y, z thuộc N thoả mãn \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Tìm x;y;z thuộc N thỏa mãn \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow\left(\sqrt{x+2\sqrt{3}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\)
\(\Leftrightarrow y+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z+2\sqrt{3}=2\sqrt{yz}\)
\(\Leftrightarrow\left[\left(x-y-z\right)+2\sqrt{3}\right]^2=\left(2\sqrt{yz}\right)^2\)
\(\Leftrightarrow\left(x-y-z\right)^2+4\sqrt{3}.\left(x-y-z\right)+12=4yz\) (1)
- Nếu x - y - z = 0 thì (1) trở thành: \(\hept{\begin{cases}x-y-z=0\\4yz=12\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}}\)
ta thấy x;y;z thuộc N nên yz=3=1.3=3.1
y=1;z=3 hoặc y=3; z=1 thì x vẫn bằng 4
\(\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
(THỎA MÃN)
- Nếu x - y - z khác 0
Ta có: \(\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}=\sqrt{3}\)
(x;y;z là số tự nhiên nên vế trái là số hữu tỉ, mà ở đây vế phải là căn 3 => Vô lý)
Vậy \(\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
Cho x,y,z \(\ge\)0 thoả mãn x+y+z \(\le\)3. Tìm Max của
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)
\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)
Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)
Theo đề bài ta có
\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)
Dấu = xảy ra khi x = y = z = 1
Cho 3 số thực dương x,y,z thoả mãn : \(x^2+y^2+z^2=48\) Tìm giá trị lớn nhất của biểu thức:
A=\(\sqrt{x^3+8}+\sqrt{x^3+8}+\sqrt{z^3+8}\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
cho các số thực x,y,z thoả mãn x+y+z≥6.
Tìm minP=\(\dfrac{x^2}{yz+\sqrt{1+x^3}}+\dfrac{y^2}{xz+\sqrt{1+y^3}}+\dfrac{z^2}{xy+\sqrt{1+z^3}}\)
Cho mng tham khảo ạ
Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)
\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)
Dấu = xảy ra khi x=2
=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)
Đặt t=(x+y+z)^2(t>=36)
=>P>=2t/t-6
Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)
\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)
=>f(t) đồng biến
=>f(t)>=f(36)=6/7
=>P>=12/7
Dấu = xảy ra khi x=y=z=2
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Huhu
tui
moi
hoc
lop
5
chua
bit
lam
lop
9
kho
qua
hihi
HONG BIET LAM
?
?
?
?
?
?
?
?
?
?
??
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
cho 3 số x,y,z dương thoả mãn
x+y+z=1
tìm gtnn của bt
\(A=\sqrt{x^2-xy+y^2}+\sqrt{y^2-yz+z^2}+\sqrt{z^2-xz+x^2}\)
áp dụng bđt cô si ta có:
\(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)
\(\Rightarrow A\ge\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{y^2+z^2}{2}}+\sqrt{\frac{z^2+x^2}{2}}\)
theo bunhia thì \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;2\left(y^2+z^2\right)\ge\left(y+z\right)^2;2\left(z^2+x^2\right)\ge\left(z+x\right)^2\)
\(\Rightarrow A\ge\sqrt{\frac{\left(x+y\right)^2}{4}}+\sqrt{\frac{\left(y+z\right)^2}{4}}+\sqrt{\frac{\left(z+x\right)^2}{4}}=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)
Vậy \(Min_A=1\Leftrightarrow x=y=z=\frac{1}{3}\)
Cho 3 số dương x, y, z thay đổi thoả mãn: \(\sqrt{\frac{xy}{z}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{yz}{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)
\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)
Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)
\(\Rightarrow9\ge3\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z\le3\)
Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)
Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Chúc bạn học tốt !!!
Cho 3 số dương x, y, z thay đổi thoả mãn:
\(\sqrt{\frac{xy}{z}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{yz}{x}}=3\) . Tìm giá trị nhỏ nhất của biểu \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cho các số thực dương thoả mãn: \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\dfrac{3}{2}\)
Cmr: \(x^2+y^2+z^2=\dfrac{3}{2}\)
Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:
x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)
Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\); \(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)
=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)
=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)