Những câu hỏi liên quan
TT
Xem chi tiết
MT
9 tháng 1 2016 lúc 11:12

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

Bình luận (0)
LH
Xem chi tiết
NT
18 tháng 12 2022 lúc 14:58

a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)

=>A^3-3A-18=0

=>A=3

b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)

=>B^3-3B-14=0

=>B=2,82

c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)

=>C^3+6C-40=0

=>C=2,84

Bình luận (0)
MA
Xem chi tiết
H24
Xem chi tiết
H24
4 tháng 6 2017 lúc 8:35

a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)

\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)

\(=\sqrt{16}\)

\(=4\)

b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)

\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)

\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)

\(=\sqrt[4]{5-\sqrt{5}+1}\)

\(=\sqrt[4]{6-\sqrt{5}}\)

Bình luận (0)
HN
Xem chi tiết
NQ
Xem chi tiết
NH
26 tháng 5 2021 lúc 22:22

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

Bình luận (1)
H24
26 tháng 5 2021 lúc 22:30

undefined

CHÚC BẠN HỌC TỐT NHÉvui

Bình luận (0)
NH
26 tháng 5 2021 lúc 22:32

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

 

Bình luận (1)
H24
Xem chi tiết
GG
1 tháng 7 2019 lúc 13:44

a) \(\left(2-\frac{a-3.\sqrt{a}}{\sqrt{a}-3}\right).\left(2-\frac{5.\sqrt{a}+\sqrt{a}.b}{\sqrt{b}-5}\right)\)

=\(\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2+\frac{\sqrt{a}\left(5-\sqrt{b}\right)}{5-\sqrt{b}}\right)\)

=\(\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\)

=4-a ( Bạn xem lại đề bài giúp mình )

b)\(\frac{9-a}{\sqrt{a}+3}-\frac{9-6\sqrt{a}+a}{\sqrt{a}-3}\) -6

=\(\frac{\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)}{\sqrt{a}+3}+\frac{\left(3-\sqrt{a}\right)^2}{3-\sqrt{a}}-6\)

=\(3-\sqrt{a}+3-\sqrt{a}-6\)

=-2\(\sqrt{a}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
LA
17 tháng 5 2016 lúc 16:21

=\(5\sqrt{5}\) nha!

Bình luận (0)