Những câu hỏi liên quan
NM
Xem chi tiết
ZZ
26 tháng 12 2019 lúc 23:49

Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 12 2019 lúc 7:32

Thấy có lời giải này hay hay nên mình copy lại nha (Trong sách Yếu tố ít nhất - Võ Quốc Bá Cẩn)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
29 tháng 12 2019 lúc 23:39

Một tài liệu khác cũng có kết quả với hướng làm giống thầy Cần:

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VH
Xem chi tiết
TL
Xem chi tiết
KS
29 tháng 1 2019 lúc 18:24

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

Bình luận (0)
H24
Xem chi tiết
TN
21 tháng 3 2017 lúc 20:59

\(\left(\frac{a+b}{2}\right)^2\ge\frac{a^2+b^2}{2}\)

\(BDT\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge\frac{a^2+b^2}{2}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

BĐT luôn đúng nên ta có ĐPCM

Bình luận (0)
H24
23 tháng 3 2017 lúc 10:30

cho x > 0,y>0

chứng minh bất đẳng thức \(_{\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4}\)

Bình luận (0)
LN
Xem chi tiết
LN
22 tháng 7 2018 lúc 10:30

Sorry, đề bài thiếu: a,b,c,d là số dương

Bình luận (0)
KT
Xem chi tiết
KN
Xem chi tiết
NC
14 tháng 4 2020 lúc 18:23

Kiểm tra lại đề nhé! 

Em thử cho a = b = c xem sao?

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 4 2020 lúc 20:35

sửa số 2 thành số 8 nha

Bình luận (0)
 Khách vãng lai đã xóa
ZN
14 tháng 4 2020 lúc 20:50

kiem tra de ban oi

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
31 tháng 12 2017 lúc 8:14

Ta co \(\left(a-b\right)^2\ge0\)\(\forall_{a,b}\in R\)

=> \(a^2-2ab+b^2\ge0\)

=>\(a^2+2ab+b^2\ge4ab\)

=>\(\left(a+b\right)^2\ge4ab\)

=>\(\left(\frac{a+b}{2}\right)^2\ge ab\)

Bình luận (0)
H24
31 tháng 12 2017 lúc 8:14

dau bang xay khi khi a=b

Bình luận (0)