Những câu hỏi liên quan
HP
Xem chi tiết
OO
1 tháng 8 2016 lúc 10:04
Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
D2
Xem chi tiết
TV
27 tháng 8 2021 lúc 9:58

bạn ơi mình có cách làm bài này dễ hơn quy nạp, bạn có thể tham khảo mình :

trước tiên mình cho bạn công thức an-bn chia hết a-b (n tự nhiên,a,b nguyên)và đề trên bạn thiếu n>0 nha , n=0 thì điều cm ko đúng

11n+1+122n-1

=11n+2-1+11n-1.12-11n-1.12+122n-2+1

=121.11n-1+11n-1.12+144n-1.12-11n-1.12

=11n-1(121+12)+12(144n-1-11n-1)

=11n-1.133+12(144n-1-11n-1)

vì 133 chia hết cho 133 suy ra 11n-1.133 chia hết cho 133 (1)

vì n>0 suy ra n-1>=0 suy ra n-1 tự nhiên

vì 144n-1-11n-1 chia hết cho 144-11=133 và  n-1 tự nhiên  suy ra 144n-1-11n-1 chia hết cho 133 suy ra 12(144n-1-11n-1) chia hết cho 133 (2)

từ (1),(2) suy ra 11n-1.133+12(144n-1-11n-1)chia hết cho 133 suy ra 11n+1+122n-1 chia hết cho 133 

Bình luận (0)
 Khách vãng lai đã xóa
D2
29 tháng 8 2021 lúc 20:09

undefined  

Mình thấy quy nạp cũng dễ mà, nhỉ :)))

Bình luận (0)
 Khách vãng lai đã xóa
D2
Xem chi tiết
XT
26 tháng 8 2021 lúc 21:54

Toán lớp 1 hả má ơi

Bình luận (0)
 Khách vãng lai đã xóa
PC
26 tháng 8 2021 lúc 21:54

đay là toán lớp 1 hả :)))

Bình luận (0)
 Khách vãng lai đã xóa
XT
26 tháng 8 2021 lúc 21:55
Cái dấu ba chấm là sao
Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NM
17 tháng 9 2019 lúc 19:17

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

Bình luận (0)
ES
Xem chi tiết
MD
Xem chi tiết
HD
Xem chi tiết
NM
29 tháng 11 2021 lúc 11:14

Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)

Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)

G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)

\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)

Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)

Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)

\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)

Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)

Vậy ta được đpcm

 

Bình luận (0)