Giải phương trình sau bằng cách đặt ẩn phụ :
\(\sqrt{x^2+2x+3}-\sqrt{x^2+3x}=3-x\)
Giải các phương trình vô tỉ sau bằng phương pháp đặt ẩn phụ:
a)\(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)
b)\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}=1\)
giải phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
2) \(2\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giải phương trình sau bằng cách đặt ẩn phụ:
\(\dfrac{x}{\sqrt{4x-1}}+\dfrac{\sqrt{4x-1}}{x}=2\)
Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)
Theo đề, ta có phương trình:
a+1/a=2
\(\Leftrightarrow a+\dfrac{1}{a}=2\)
\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)
=>a=1
=>\(x=\sqrt{4x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
Giải phương trình:
(x+1)\(\sqrt{x^2-2x+3}\)=x2+1
(Giải bằng cách đặt ẩn phụ nha)
ĐK: \(x>-1\)
\(PT\Leftrightarrow a^2-\left(x+1\right)a+2x-2=0\)
\(\Leftrightarrow\left(2-a\right)\left(x-a-1\right)=0\)
.Làm nốt.
~Ko chắc~
À quên: Đặt \(a=\sqrt{x^2-2x+3}\ge\sqrt{2}\)
(x+1)\(\sqrt{x^2-2x+3}\)=\(x^2\)+1
(x+1)\(\sqrt{\left(x-1\right)^2+2}\)-(x+1)(x-1)=0
(x+1)(x-1-x+1+\(\sqrt{2}\))=0
(x+1)\(\sqrt{2}\)=0
<=>x+1=0
<=>x=-1
Giair phương trình bằng cách đặt ẩn phụ:
a) \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
b) \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
Giải phương trình \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\) ( Chú ý giải bằng phương pháp đặt ẩn phụ nhé mấy bạn , tks mọi người )
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a>0\\\sqrt{x-2}=b\ge0\\\sqrt{x+3}=c>0\end{matrix}\right.\)
\(\Leftrightarrow ab+c=b+ac\)
\(\Leftrightarrow a\left(b-c\right)-\left(b-c\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=c\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\-2=3\left(vn\right)\end{matrix}\right.\)
Giải phương trình \(\sqrt{3x+1}+\sqrt{2x-1}+x^2+2x-6=0\) bằng phương pháp đặt ẩn phụ
giải phương trình bằng cách đặt ẩn phụ
\(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
giúp mình với
Giải phương trình sau bằng cách đặt ẩn phụ:
\(\sqrt[4]{x}+\sqrt[4]{x+1}=\sqrt[4]{2x+1}\)
ĐK \(x\ge0\)
Đặt \(x=a,x+1=b\)
\(PT\Leftrightarrow a^4+b^4=\left(a+b\right)^4\)
<=> 4a3b+6a2b2+4ab3=0
<=> ab(2a2+3ab+2b2)=0
=>ab=0 (vì 2a2+3ab+2b2>0)
=>\(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy.............................