GPT :
a) \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
b) \(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
GPT
\(\sqrt{x^2-2x+3}-\sqrt{x^2-6x+11}=\sqrt{3-x}-\sqrt{x-1}\)
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
Lời giải:
ĐK: $1\leq x\leq 3$
PT \(\Leftrightarrow \frac{x^2-2x+3-(x^2-6x+11)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}=\frac{3-x-(x-1)}{\sqrt{3-x}+\sqrt{x-1}}\)
\(\Leftrightarrow \frac{4(x-2)}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2(x-2)}{\sqrt{3-x}+\sqrt{x-1}}=0\)
\(\Leftrightarrow (x-2)\left[\frac{4}{\sqrt{x^2-2x+3}+\sqrt{x^2-6x+11}}+\frac{2}{\sqrt{3-x}+\sqrt{x-1}}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông lớn hơn $0$ nên $x-2=0$
$\Rightarrow x=2$ (t/m)
Vậy.......
gpt:\(\sqrt{3x^2+6x+4}+\sqrt{2x^2+4x+11}=\left(1-x\right)\left(x+3\right)\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
\(\sqrt{x^2-x+2}+\sqrt{x^2-3x+6}=2x\)
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
gpt : a) \(\frac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\frac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b) \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
c) \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)
b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:
* Với \(x>-2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)
* Với \(x< -2\) thì
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)
Do đó pt có nghiệm duy nhất \(x=-2\)
c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)
\(\Rightarrow a^4+b^4=2\)
Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)
Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)
tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm
Quoc Tran Anh Le
giúp mk vs!
mk cảm ơn nhiều!
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
Giải Phương Trình
a)\(\sqrt{x^2-6x+1}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
b)\(\frac{x^2-6x+15}{x^2-6x+11}=\sqrt{x^2-6x+18}\)
gpt:
\(a,\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{6x-4}{\sqrt{x^2+4}}\)
b) \(\sqrt{\dfrac{6}{3-x}}+\sqrt{\dfrac{8}{2-x}}=6\)
Giai phương trình
a)\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
b)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
<=>\(\left|x-2\right|+\left|x-3\right|=1\)
đến đây chia 3 trường hợp để phá trị tuyệt đối là ra
b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
câu này cũng tương tự câu a nha
a) \(\sqrt{4x^2-4x+1}=3\)
b)\(\sqrt{x^2-10x+25}+2-x\)
c)\(\sqrt{x^2-6x+9}+x=11\)
d)\(\sqrt{3x+19}=x+3\)
e)\(\sqrt{x^2+x+5}-1=x\)
a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=-2 hoặc 2x=4
=>x=2 hoặc x=-1
c: \(\Leftrightarrow\left|x-3\right|=11-x\)
=>x<=11 và (x-3)^2=(11-x)^2
=>x<=11 và x^2-6x+9=x^2-22x+121
=>x<=11 và 16x=112
=>x=7
d:
ĐKXĐ: 3x+19>=0
=>x>=-19/3
PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9
=>x>=-3 và x^2+6x+9-3x-19=0
=>x>=-3 và (x+5)(x-2)=0
=>x=2
e: =>\(\sqrt{x^2+x+5}=x+1\)
=>x>=-1 và x^2+x+5=x^2+2x+1
=>x>=-1 và 2x+1=x+5
=>x=4