Những câu hỏi liên quan
TN
Xem chi tiết
H9
29 tháng 10 2023 lúc 10:41

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)

Bình luận (0)
CT
Xem chi tiết
NT
19 tháng 8 2021 lúc 13:08

a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

Bình luận (0)
CN
Xem chi tiết
NT
16 tháng 9 2021 lúc 21:59

9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)

Bình luận (0)
DV
Xem chi tiết
NT
5 tháng 10 2021 lúc 23:00

a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)

b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)

c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)

Bình luận (0)
GV
Xem chi tiết
NT
26 tháng 10 2021 lúc 22:01

a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)

b: \(=-5y-9+xy\)

 

Bình luận (0)
LP
Xem chi tiết
NT
3 tháng 10 2021 lúc 22:31

\(\left(x-3\right)^3=x^3-9x^2+27x-27\)

\(\left(2x+\dfrac{1}{2}\right)^3=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)

Bình luận (0)
TN
Xem chi tiết
NT
28 tháng 10 2023 lúc 20:38

\(\)a: \(\left(x-2y\right)^3\)

\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=x^3-6x^2y+12xy^2-8y^3\)

b: \(\left(2x+y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)

\(=8x^3+12x^2y+6xy^2+y^3\)

c: \(\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{3}x\right)^3-3\cdot\left(\dfrac{1}{3}x\right)^2\cdot1+3\cdot\dfrac{1}{3}x\cdot1^2-1^3\)

\(=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+x-1\)

d: \(\left(x+\dfrac{1}{3}y\right)^3\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}y+3\cdot x\cdot\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)

\(=x^3+x^2y+\dfrac{1}{3}xy^2+\dfrac{1}{27}y^3\)

e: (2x-3y)3

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)

\(=8x^3-36x^2y+54xy^2-27y^3\)

f: \(\left(x^2-2y\right)^3\)

\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=x^6-6x^4y+12x^2y^2-8y^3\)

g: \(\left(\dfrac{1}{2}x-y\right)^3=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y+3\cdot\dfrac{1}{2}x\cdot y^2-y^3\)

\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-y^3\)

Bình luận (0)
NH
Xem chi tiết
NT
10 tháng 7 2021 lúc 10:56

a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)

\(=x^6-9x^3+8-x^6+9x^3=8\)

b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)

\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)

\(=x^6-y^6-x^6+y^6=0\)

Bình luận (0)
LK
Xem chi tiết
AH
16 tháng 9 2023 lúc 23:31

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$

Áp dụng BĐT Bunhiacopxky:

$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$

$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$

$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)