Những câu hỏi liên quan
H24
Xem chi tiết
BS
Xem chi tiết
LT
Xem chi tiết
H24
15 tháng 12 2020 lúc 22:58

Ta có:

\(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\\ =\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{x^3-y^3}\\ =\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ =\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

Bình luận (0)
MT
15 tháng 12 2020 lúc 23:15

    \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\) \(=\dfrac{x^2+xy+y^2}{x^3-y^3}-\dfrac{3xy}{x^3-y^3}+\dfrac{\left(x-y\right)^2}{x^3-y^3}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{x^3-y^3}\)

\(=\dfrac{2x^2+2y^2-4xy}{x^3-y^3}\)

\(=\dfrac{2x^2-2xy-2xy+2y^2}{x^3-y^3}\)

\(=\dfrac{2x\left(x-y\right)-2y\left(x-y\right)}{x^3-y^3}\)

\(=\dfrac{\left(2x-2y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x-2y}{x^2+xy+y^2}\)

Bình luận (0)
H24
Xem chi tiết
TT
2 tháng 9 2020 lúc 14:25

\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)

Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
VT
2 tháng 9 2020 lúc 14:34

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy+xy}{xy}\)

\(=\frac{-2xy}{xy}\)

\(=-2.\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
2 tháng 9 2020 lúc 14:35

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy\left(x-y\right)}\)( ĐKXĐ : \(x\ne y;x,y\ne0\))

\(\frac{3xy^2+x^2y-3x^2y-xy^2}{xy\left(x-y\right)}\)

\(=\frac{xy^2\left(3-1\right)+x^2y\left(1-3\right)}{xy\left(x-y\right)}\)

\(=\frac{xy^2\left(3-1\right)-x^2y\left(3-1\right)}{xy\left(x-y\right)}\)

\(=\frac{2\left(xy^2-x^2y\right)}{xy\left(x-y\right)}\)

\(=\frac{2xy\left(y-x\right)}{-xy\left(y-x\right)}\)

\(=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
PH
30 tháng 10 2018 lúc 22:36

ĐK: \(x,y\ne0,x\ne\pm y\)

Phép tính trên bằng:

        \(\left(\frac{\left(x-y\right)\left(x+y\right)}{xy}-\frac{1}{x+y}.\frac{x^3-y^3}{xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x+y\right)^2}{xy\left(x+y\right)}-\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)xy}\right):\frac{x-y}{x}\)

\(=\left(\frac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}\right):\frac{x-y}{x}\)

\(=\frac{\left(x-y\right)xy}{xy\left(x+y\right)}.\frac{x}{x-y}=\frac{x}{x+y}\)

Bình luận (0)
H24
Xem chi tiết
KR
22 tháng 7 2023 lúc 8:28

`a)`

`3x(2xy - 5x^2y)`

`= 3x*2xy + 3x* (-5x^2y)`

`= 6x^2y - 15x^3y`

`b)`

`2x^2y (xy - 4xy^2 + 7y)`

`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c)`

`(-2/3xy^2 + 6yz^2)*(-1/2xy)`

`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

Bình luận (0)
VT
22 tháng 7 2023 lúc 8:26

`a, 3x(2xy-5x^2y)`

`= 6x^2y - 15x^3y`

`b, 2x^2y(xy-4xy^2+7y)`

`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`

`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`

`= 1/3x^2y^3 - 3xy^2z^2`

Bình luận (0)
MT
Xem chi tiết
NT
19 tháng 8 2020 lúc 20:58

Bài 1:

a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)

\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)

b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x-2y}{x^2+xy+y^2}\)

c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)

\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)

\(=\frac{x^2+xy-1}{2x-y}\)

d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)

\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(=\frac{2x^2-2y^2+2y^2}{x}\)

\(=\frac{2x^2}{x}=2x\)

Bài 2:

a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)

\(=\frac{12x+3-6x-4}{6}\)

\(=\frac{6x-1}{6}\)

b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)

\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)

\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)

\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)

e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)

f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

Bình luận (0)
TL
Xem chi tiết
ND
10 tháng 10 2020 lúc 12:42

Ta có:

\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\) \(\left(x\ne y\right)\)

\(=\frac{1}{x-y}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)}{x^2+xy+y^2}\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
KL
17 tháng 12 2020 lúc 11:06

MTC = (x - y)(x2 + xy + y2)

\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

Bình luận (0)
NL
16 tháng 12 2020 lúc 22:19

1/x-y-3xy/x^3-y^3+x-y/x^2+xy+y^2

=1/x-y+-3xy/(x-y)(x^2+xy+y^2)+x-y/x^2+xy+y^2

=x^2+xy+y^2/(x-y)(x^2+xy+y^2)+-3xy/(x-y)(x^2+xy+y^2)+x^2-2xy+y^2/(x-y)(x^2+xy+y^2)

=x^2+xy+y^2-3xy+x^2-2xy-y^2/(x-y)(x^2+xy+y^2)

=2x^2-5xy/(x-y)(x^2+xy+y^2)

Bình luận (0)
KL
17 tháng 12 2020 lúc 11:06

MTC = (x - y)(x2 + xy + y2)

\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

Bình luận (0)