Những câu hỏi liên quan
H24
Xem chi tiết
NL
20 tháng 4 2019 lúc 16:34

Chỉ tìm được min với điều kiện \(x;y;z\) dương, bất kì thì chịu

Áp dụng BĐT \(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\) ta được:

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{z^4+y^4}{z^3+y^3}+\frac{x^4+z^4}{x^3+z^3}\ge\frac{x^3+y^3}{x^2+y^2}+\frac{z^3+y^3}{z^2+y^2}+\frac{x^3+z^3}{x^2+y^2}\)

\(P\ge\frac{x^2+y^2}{x+y}+\frac{z^2+y^2}{z+y}+\frac{x^2+z^2}{x+z}\ge\frac{x+y}{2}+\frac{z+y}{2}+\frac{x+z}{2}=x+y+z=2017\)

\(\Rightarrow P_{min}=2017\) khi \(x=y=z=\frac{2017}{3}\)

Bình luận (0)
H24
Xem chi tiết
H24
7 tháng 5 2020 lúc 20:38

a, \(\frac{x-3}{y-2}=\frac{3}{2}\)và \(x-y=4\)

Theo bài ra ta có : 

\(\frac{x-3}{y-2}=\frac{3}{2}\Leftrightarrow2x-6=3y-6\Leftrightarrow2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Áps dụng tính chất dãy tỉ số bằng nhau ta đc :

\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)

\(\frac{x}{3}=4\Leftrightarrow x=12\)

\(\frac{y}{2}=4\Leftrightarrow y=8\)

Tương tự với b thôi bn.

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
HO
Xem chi tiết
HL
5 tháng 8 2016 lúc 17:13

e, Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14-6}{8}=1\)

Do đó: \(\frac{x-1}{2}=1\Rightarrow x=2.1+1=3\)

\(\frac{2y-4}{6}=1\Rightarrow y=\frac{6.1+4}{2}=5\)

\(\frac{3z-9}{12}=1\Rightarrow z=\frac{12.1+9}{3}=7\)

Vậy x=3; y=5; z=7

h, Ta có: \(\frac{x}{2}=\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{x.y}{2.3}=\frac{54}{6}=9\)

Do đó: \(\frac{x^2}{4}=9\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)

\(\frac{y^2}{9}=9\Rightarrow y^2=9.9=81\Rightarrow y=9;y=-9\)

Bình luận (0)
DT
Xem chi tiết
H24
18 tháng 7 2019 lúc 20:28

a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7

Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)

Mà \(\frac{y}{4}=\frac{z}{5}\)nên  \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)

Từ \(\frac{x}{2}=1=>x=2\)

Từ\(\frac{y}{4}=1=>y=4\)

Từ \(\frac{z}{5}=1=>z=5\)

 \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Bình luận (0)
DT
18 tháng 7 2019 lúc 20:47

Cam on

Bình luận (0)
EC
18 tháng 7 2019 lúc 20:48

b) Ta có: \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\) <=> \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)

=> \(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}}\)       =>  \(\hept{\begin{cases}x=30.2=60\\y=30.\frac{3}{2}=45\\z=30.\frac{4}{3}=40\end{cases}}\)

Vậy ...

Bình luận (0)
MS
Xem chi tiết
EC
23 tháng 8 2019 lúc 9:10

Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)

=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)

=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)

=> 10x2  + 2x - 50x - 10 = 10x2 - 2x - 25x + 5

=> 10x2 - 48x - 10x2 + 27x = 5 + 10

=> -21x = 15

=> x = 15 : (-21) = -5/7

Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)

=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)

=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)

=> \(\frac{5}{4}=\frac{y}{3}\)

=> 4y = 15

=> y = 15/4

Vậy ...

Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\)  => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)

Bình luận (0)
NT
Xem chi tiết
HP
16 tháng 8 2015 lúc 16:11

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) \(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y-4+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(1+4+9\right)}{8}=\frac{14-14}{8}=0\)

\(x=0.2+1=1\) ; \(y=\left(0.6+4\right):2=2\) ; \(z=\left(0.12+9\right):3=3\)

Bình luận (0)
TQ
Xem chi tiết
H24
30 tháng 8 2017 lúc 15:51

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Theo tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

\(\frac{2x-2}{4}+\frac{3y-6}{9}-\frac{z-3}{4}\)\(=\frac{95}{9}\)

=> \(x=\frac{190}{9}\)\(y=\frac{95}{3}\)\(z=\frac{380}{9}\)

Bình luận (0)
TT
30 tháng 8 2017 lúc 15:52

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x+3y-z-5}{9}=\frac{90}{9}=10\)

x=;y=;z= tu tinh

Bình luận (0)
AW
Xem chi tiết