Những câu hỏi liên quan
NV
Xem chi tiết
MT
27 tháng 8 2015 lúc 12:50

\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|x-3\right|\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Dấu "=" xảy ra khi:

\(\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow x+2\ge0\text{ và }3-x\ge0\text{ hoặc }x+2\le0\text{ và }3-x\le0\)

\(\Leftrightarrow x\ge-2\text{ và }x\le3\text{ hoặc }x\le-2\text{ và }x\ge3\left(loại\right)\)

Vậy giá trị nhỏ nhất của biểu thức là 5 tại \(-2\le x\le3\)

Bình luận (0)
CD
Xem chi tiết
H24
3 tháng 7 2020 lúc 16:37

\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 7 2020 lúc 21:12

Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)

Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)

\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)

Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)

\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)

Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
HN
Xem chi tiết
BV
16 tháng 7 2016 lúc 16:49

ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\)\(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.

Bình luận (0)
PA
9 tháng 7 2016 lúc 15:28

bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.

đáp án: Min A=  2

Bình luận (0)
HN
9 tháng 7 2016 lúc 16:36

Phan Quỳnh Anh Cách của bạn không ổn đâu, với lại kết quả bạn chưa đúng ^^

Bình luận (0)
CC
Xem chi tiết
TN
30 tháng 12 2015 lúc 17:46

b) căn bậc hai(x^2+5*x+1)

Bình luận (0)
TN
30 tháng 12 2015 lúc 18:03

b) căn bậc hai(x^2+5*x+1)

Bình luận (0)
TD
30 tháng 12 2015 lúc 20:47

Mình hơi bị rảnh khi trả lời cho bạn

a) bình phương 2 vế là ra

b) áp dụng câu a)

c) giải phương trình bằng phương pháp dùng bất đẳng thức, áp dụng câu a), dấu bằng xảy ra khi AB\(\ge\)0, rồi lập bảng xét dấu

Bình luận (0)
HN
Xem chi tiết
NT
9 tháng 7 2016 lúc 21:20

dùng côsi ra = 1 chắc v

Bình luận (0)
H24
10 tháng 7 2016 lúc 16:52

ê tuấn nếu cô-si thì mk nghĩ phải =2 chứ sao =1 được 

Bình luận (1)
NT
11 tháng 7 2016 lúc 11:51

đề Nguyễn du

Bình luận (0)
NV
Xem chi tiết
SS
8 tháng 11 2015 lúc 21:51

đưa về giá trị tuyệt đối,,,sau đó áp dụng hđt

Bình luận (0)
HD
Xem chi tiết
NT
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Bình luận (0)
NT
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Bình luận (0)
DX
Xem chi tiết
LH
24 tháng 10 2016 lúc 19:55

\(M=\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)

\(=\sqrt{x^2+2.x.3+3^2}+\sqrt{x^2-2.2x+2^2}\)

\(=\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}\)

TH1 : \(x< -3;\)có :

\(M=-\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=-3-x+2-x\)

\(=-1-2x>-1-2.\left(-3\right)=-1+6=5\)

TH2 : \(-3\le x\le2;\)có :

\(M=\left(x+3\right)+\left[-\left(x-2\right)\right]\)

\(=x+2+2-x=4\)

TH3: \(x>2\)

\(\Rightarrow M=\left(x+3\right)+\left(x-2\right)=2x+1\ge2.2+1=5\)

\(\Rightarrow Min_M=4\)

\(\Leftrightarrow-3\le x\le2\)

Vậy ...

Tại hạ chưa học lớp 9 nên làm cách quèn :)

Bình luận (0)