Những câu hỏi liên quan
TT
Xem chi tiết
H24
3 tháng 3 2019 lúc 13:21

Định lí Bezout: Số dư của phép chia đa thức cho nhị thức bằng giá trị của tại

Ta có số dư R(x) của phép chia P(x) cho x-1 là giá trị của P(x) tại x=1.

Có P(1)=\(1+1^3+1^9+1^{27}+1^{81}=5\)

Vậy số dư R(x) của phép chia P(x) cho x-1 là 5.

Bình luận (0)
H24
3 tháng 3 2019 lúc 14:03

\(\text{cách khác :)}\)

\(x\equiv1\left(\text{mod x-1}\right)\Rightarrow x^k\equiv1\left(\text{mod x-1}\right)\text{ với k thuộc N}\)

\(\Rightarrow x^3,x,x^9,x^{27},x^{81}\text{ đều chia x-1 dư 1}\)

\(\text{Nên số dư của P(x) cho x-1 là 5}\)

Bình luận (0)
DL
Xem chi tiết
H24
17 tháng 7 2018 lúc 13:12

gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:

\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)

với x = 1 thì: a + b = 5 (1)

với x = -1 thì: -a + b = -5 (2)

từ (1); (2) => b = 0; a = 5

=> số dư của phép chia là 5x

Bình luận (0)
H24
17 tháng 7 2018 lúc 13:44

Gọi Q(x) là thương và ax + b là số dư của phép chia trên, ta có:

x + x+ x+ x27 + x81 = (x- 1) . Q(x) + ax + b

Với x = 1 thì a + b = 5(1)

Với x = -1 thì -a + b = -5(2)

Từ (1) : (2) => a = 5; b = 0

=> Số dư phép chia là: 5x

Bình luận (0)
DF
Xem chi tiết
NT
12 tháng 12 2020 lúc 20:27

a)

Gọi đa thức dư là A(x)

Vì đa thức dư P(x) có bậc là 3

nên đa thức dư có bậc không quá 2

hay đa thức dư có dạng là \(ax^2+bx+c\)

Ta có: Q(x)=\(A\left(x\right)\cdot\left(x-1\right)\cdot x\cdot\left(x+1\right)+ax^2+bx+c\)

Với x=1 thì a+b+c=6(1)

Với x=-1 thì a-b+c=-4(2)

Với x=0 thì  c=1

Thay c=1 vào (1), (2), ta được:

a+b=5 và a-b=-5

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5-b-b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\-2b=-5-5=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-5=0\\b=5\end{matrix}\right.\)

Vậy: đa thức dư có dạng là 5x+1

b) Để Q(x) chia hết cho P(x) thì 5x+1=0

\(\Leftrightarrow5x=-1\)

hay \(x=-\dfrac{1}{5}\)

Bình luận (0)
CD
Xem chi tiết
NA
31 tháng 8 2020 lúc 21:22

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

Bình luận (0)
 Khách vãng lai đã xóa
VK
Xem chi tiết
TA
Xem chi tiết
TT
8 tháng 12 2016 lúc 15:30

x2+(x+y)2=(x+9)2

x2+x2+2xy+y2=x2+18x+81

x2+x2+2xy+y2-x2-18x-81=0

x2+2xy+y2-18x-81=0

het biet roi

Bình luận (0)
TT
8 tháng 12 2016 lúc 16:08

Ta có: x^2+(x+y)^2=(x+9)^2

=>x^2+x^2+2xy+y^2=x^2+18x+81

=>2x^2+2xy+y^2=x^2+18x+81

=>2x^2+2xy+y^2-x^2-18x-81=0

=>(x^2+2xy+y^2)-18(x+1)-99=0

=>(x+1)^2-18(x+1)-99=0

=>(x+1)(x+1-18)-99=0

=>(x+1)(x-17)-99=0

=>(x+1)(x-17)=99

=>(x+1)(x-17)=1*99=3*33=......

=>x=tự tính nốt

=>

Bình luận (0)
AP
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết