Những câu hỏi liên quan
NV
Xem chi tiết
NV
6 tháng 6 2016 lúc 20:51
Giúp mình đi mọi người
Bình luận (0)
CH
7 tháng 6 2016 lúc 11:18

Cô hướng dẫn nhé nguyen van vu :)

K

a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)

b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.

c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.

Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)

nên ID =MD, mà MD=DB nên ID=DB.

Gọi K là giao của MH và AD.

Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)

Tương tự giao điểm của BC với MH cũng là trung điểm MH.

Tóm lại N trùng K hay MN vuông góc AB.

Bình luận (0)
LA
Xem chi tiết
NT
2 tháng 1 2023 lúc 19:48

a: Xét (O) có

DA,DC là tiếp tuyến

nên DA=DC và OD là phân giác của góc AOC(1)

mà OA=OC

nen OD là trung trực của AC

Xét (O) có

EC,EB là tiếp tuyến

nên EB=EC và OE là phân giác của góc COB(2)

mà OB=OC

nên OE là trung trực của BC

Từ (1), (2) suy ra góc DOE=1/2*180=90 độ

Xét tứ giác CHOK co

góc CHO=góc CKO=góc HOK=90 độ

nên CHOK là hình chữ nhật

b: OH*OD+OK*OE

=OC^2+OC^2

=2*OC^2

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 12 2021 lúc 22:46

b: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=AC+BD

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 12 2023 lúc 22:46

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

OC là phân giác của \(\widehat{AOM}\)

nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

Ta có: OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

b: Xét tứ giác BDMO có

\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)

=>BDMO là tứ giác nội tiếp đường tròn đường kính OD

=>B,D,M,O cùng nằm trên đường tròn đường kính OD

Bán kính là \(R'=\dfrac{OD}{2}\)

c: Ta có: CD=CM+MD

mà CM=CA 

và DM=DB

nên CD=CA+DB

d,e: Gọi N là trung điểm của CD

Xét hình thang ABDC có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

Ta có: ON//AC

AC\(\perp\)AB

Do đó: ON\(\perp\)AB

Ta có: ΔCOD vuông tại O

=>ΔCDO nội tiếp đường tròn đường kính CD

=>ΔCOD nội tiếp (N)

Xét (N) có

NO là bán kính 

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)

f: Xét ΔNCA và ΔNBD có

\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)

\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)

Do đó: ΔNCA đồng dạng với ΔNBD

=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)

Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)

nên MN//AC

Bình luận (0)
DT
Xem chi tiết
NT
19 tháng 12 2021 lúc 20:01

2: Xét tứ giác BDMO có 

\(\widehat{DBO}+\widehat{DMO}=180^0\)

Do đó: BDMO là tứ giác nội tiếp

Bình luận (0)
TA
Xem chi tiết
NT
25 tháng 12 2021 lúc 0:21

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB

Bình luận (0)
LN
Xem chi tiết
TV
Xem chi tiết
NT
16 tháng 12 2022 lúc 22:00

a: Xét tứ giác OAPC có

góc OAP+góc OCP=180 độ

nên OAPC là tứ giác nội tiếp

b: Xét (O) có

PC,PA là tiếp tuyến

nên PA=PC

mà OC=OA

nên OP là trung trực của AC

=>OP vuông góc với AC

Xét (O) có

QC,QB là các tiếp tuyến

nên QC=QB 

mà OB=OC

nên OQ là trung trực của BC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔACB vuông tại C

Xét tứ giác CMON có

góc CMO=góc CNO=góc MCN=90 độ

nen CMON là hình chữ nhật

c: PA*BQ=PC*CQ=OC^2=OB*OA

Bình luận (0)
KG
Xem chi tiết
AT
29 tháng 7 2021 lúc 20:22

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

Bình luận (0)
DM
Xem chi tiết