Bài 1: Tìm các số x,y,z biết
a, x/y=5/8 và x-y=12
b, x/4=y/3=z/9 và x-3y+4z=62
c, a/3=b/8=c/5 và 3a+b-2c=14
d, a/10=b/6=c/21 và 5a+b-2x=28
Bài 2: tìm x,y,z biết
a, x/3=b/4; y/5=z/7 và 2x+3y-z=186
b, x/3=y/4; y/3=z/5 và 2x-3y+z=6
c, x:y:z=3:8:5 và 3x+y-27=14
Giúp mk lm vs ạ mk cảm ơn nhiều ạ
Mk cần gấp để nộp ạ
x/3=y/4;y/5=z/7 và 2x+3y-z =186, Giúp mình với ạ
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
\(\Rightarrow x=45;y=60;z=84\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow x=\frac{3}{4}y, \frac{y}{5}=\frac{z}{7}\Rightarrow z=\frac{7}{5}y\)
\(2x+3y-z=186\Rightarrow2.\frac{3}{4}y+3y-\frac{7}{5}y=186\Rightarrow\frac{31}{10}y=186\Rightarrow y=60\)
\(\Rightarrow x=\frac{3}{4}y=45, z=\frac{7}{5}y=84\)
X phần 6 = y phần 3 biết x×y =3 tìm x,y
Giải gấp giúp mình với ạ
Đặt x/6 = y/3 = k
=> x=6k và y = 3k
Ta có : xy = 3
=> 18k^2 = 3
=> k^2 = 1/6
=> k = ±√1/6 = ±√6 / 6
Vậy (x;y) = (√6;√6 /2);(-√6;-√6 /2)
Tìm số nguyên x,y biết:
a)2xy-2x+3y=-9
b)(x+1)2.(y-3)=-4
c)(x+3)2+(2y-1)2<44
d)(x2-1)(x2-6)<0
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. MỌI NGƯỜI GIẢI THEO CÁCH HỌC CỦA TOÁN 6. MÌNH CẢM ƠN MỌI NGƯỜI
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
c) \(\left(x+3\right)^2+\left(2y-1\right)^2< 44\)
\(\Leftrightarrow\left(x+3\right)^2< 44-\left(2y-1\right)^2< 44\) (do \(-\left(2y-1\right)^2\le0\)) (1)
mà (x + 3)2 là số chính phương
Kết hợp (1) ta được \(\left(x+3\right)^2\le36\)
\(\Leftrightarrow\left(x+3\right)^2\le6^2\Leftrightarrow\left(x+3\right)^2\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{0;1;4\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{9;16\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25\right\}\)
Với (x + 3)2 = 25 ta được (2y - 1)2 \(\in\left\{0;1;4;9;16\right\}\)
Với (x + 3)2 = 36 ta được (2y - 1)2 \(\in\left\{0;1;4;9\right\}\)
giải giúp mình với
tìm x , y , z biết : ( nếu câu b bị dư thì các bạn chuyển sang phân số nha , cảm ơn)
a, \(\frac{x+1}{8}=\frac{8}{x+1}\)
b, \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{Z}{7}\) VÀ \(2x+3y=186\)
a) ĐKXĐ: \(x\ne-1\)
Ta có:
\(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=8^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}\left(TMĐKXĐ\right)}\)
\(\)
a, \(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=8.8\)
\(\Leftrightarrow\left(x+1\right)=\pm8\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)
b, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\left(2x+3y=186\right)\)
Theo đề bài ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3.5}=\frac{y}{4.5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.4}=\frac{z}{7.4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y}{90}=\frac{186}{90}=\frac{31}{15}\)
\(\Rightarrow\frac{2x}{30}=\frac{31}{15}\Rightarrow2x=62\Rightarrow x=31\)
\(\frac{3y}{60}=\frac{31}{15}\Rightarrow3y=124\Rightarrow y=\frac{124}{3}\)
Mà \(\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{\frac{124}{3}}{20}=\frac{z}{28}\Rightarrow\frac{31}{15}=\frac{z}{28}\)
Từ đây bạn tìm nốt z nha
Y : 7/5 = 5/6 + 5/12 . Giá trị của y là : A.15/12 B.5/4 C.7/4 D.25/28 Các bạn làm nhanh giúp mình với ạ . Mình cảm ơn!
\(Y:\dfrac{7}{5}=\dfrac{5}{6}+\dfrac{5}{12}=\dfrac{15}{12}\\ Y=\dfrac{15}{12}\times\dfrac{7}{5}=\dfrac{7}{4}\)
\(y:\dfrac{7}{5}=\dfrac{5}{6}+\dfrac{5}{12}\\ \Leftrightarrow y:\dfrac{7}{5}=\dfrac{5\times2}{6\times2}+\dfrac{5}{12}\\ \Leftrightarrow y:\dfrac{7}{5}=\dfrac{10}{12}+\dfrac{5}{12}\\ \Leftrightarrow y:\dfrac{7}{5}=\dfrac{15}{12}\\ \Leftrightarrow y:\dfrac{7}{5}=\dfrac{5}{4}\\ \Leftrightarrow y=\dfrac{5}{4}\times\dfrac{7}{5}\\ \Leftrightarrow y=\dfrac{7}{4}\)
\(\Rightarrow C\)
y:7/5=5/6+5/12
y:7/5=5/4
y =5/4x7/5
y =7/4
đáp án:c
Cho biết đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ a và khi x=4 thì y=9
a) Tìm hệ số a
b) Viết công thức tính y theo x và tính x theo y
c) Tính gia trị của y khi x=3; x=-4;x=6;x=-9;x=12
d) Tính giá trị của x khi y=9;y=-3;y=-4;y=12;y=-6
Cố gắng giải hết giúp mình nha
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 9: Tìm x, y, z, t nguyên biết
12/-6=x/5=-y/3=z/-17=-t/-9
Bài 10: Tìm x, y, z, t, u biết:
4/3=12/9=8/x=y/21=40/2=16/t=u/111
Bài 11: Tìm x, y, z, t, u biết:
-7/6=x/18=-98/y=-14/z=t/102=u/-78
Mong mn giải nhanh giúp ạ.
Mk đang cần gấp để nộp cho thầy ạ
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
Nguyễn Lê Phước Thịnh giải giùm mk bài 10 đc ko ạ
giúp mình giải bài này với ạ!!!
a) |2x+4| + |y|=0
b) |3-x| - |6-3y| =0
a) Vì \(\left|2x+4\right|\ge0;\left|y\right|\ge0\)
mà \(\left|2x+4\right|+\left|y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x+4\right|=0\\\left|y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-2;0\right)\)