Những câu hỏi liên quan
H24
Xem chi tiết
NT
2 tháng 3 2022 lúc 10:15

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 7 2023 lúc 9:25

a: Xét ΔABC có AC>AB

nên góc B>góc C

b: Xét ΔABC có AB<AC

mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

c: góc B+góc C=90 độ

góc HAC+góc C=90 độ

=>góc B=góc HAC

góc C+góc B=90 độ

góc HAB+góc B=90 độ

=>góc C=góc HAB

Bình luận (0)
TN
Xem chi tiết
NT
19 tháng 8 2021 lúc 13:46

Bài 2: 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot EB=HE^2\)

b: Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: FE=AH và \(\widehat{FHE}=90^0\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot FC=FH^2\)

Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:

\(HF^2+HE^2=FE^2\)

\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)

Bình luận (0)
NH
19 tháng 8 2021 lúc 14:06

1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)

BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)

\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)

2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.

b)Chứng minh tương tự câu a), ta được:

AF.FC=HF^2

Lại có:

Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.

Suy ra, HF = AE

Suy ra, AF.FC=AE^2

Mà AE.EB=HE^2

Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)

3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:

\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
AT
13 tháng 7 2021 lúc 9:37

a) Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{16^2+12^2}=20\left(cm\right)\)

Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=\dfrac{48}{5}\left(cm\right)\)

Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=\dfrac{64}{5}\left(cm\right)\)

Ta có: \(sinB=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\Rightarrow\angle B\approx37\)

b) tam giác AHE vuông tại H có HN là đường cao \(\Rightarrow AN.AE=AH^2\)

tam giác ABC vuông tại A có AH là đường cao \(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AN.AE=HB.HC\)

c) tam giác AHB vuông tại H có HM là đường cao \(\Rightarrow AH^2=AM.AB\)

\(\Rightarrow AN.AE=AM.AB\Rightarrow\dfrac{AM}{AE}=\dfrac{AN}{AB}\)

Xét \(\Delta AMN\) và \(\Delta AEB:\) Ta có: \(\left\{{}\begin{matrix}\angle EABchung\\\dfrac{AM}{AE}=\dfrac{AN}{AB}\end{matrix}\right.\)

\(\Rightarrow\Delta AMN\sim\Delta AEB\left(c-g-c\right)\Rightarrow\dfrac{AE}{AM}=\dfrac{BE}{MN}\)

mà \(BE=3MN\Rightarrow\dfrac{BE}{MN}=3\Rightarrow\dfrac{AE}{AM}=3\Rightarrow AE=3AM\)

undefined

Bình luận (1)
NT
13 tháng 7 2021 lúc 13:35

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot20=16\cdot12=192\)

hay AH=9,6(cm)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=16^2-9.6^2=163.84\)

hay HB=12,8(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

hay \(\widehat{B}\simeq37^0\)

Bình luận (0)
NT
13 tháng 7 2021 lúc 13:37

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHE vuông tại H có HN là đường cao ứng với cạnh huyền AE, ta được:

\(AN\cdot AE=AH^2\)(2)

Từ (1) và (2) suy ra \(HB\cdot HC=AN\cdot AE\)

Bình luận (0)
NL
Xem chi tiết
TM
Xem chi tiết
NT
19 tháng 3 2020 lúc 17:47

A B C H 10cm 12cm

Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AB=AC\)\(\Delta ABC\)cân tại A )

AH là cạnh chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch.gn\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

b) Vì \(HB=HC\left(cmt\right)\)

\(\Rightarrow HB=HC=\frac{12}{2}=6cm\)

Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\) có:

\(AC^2=AH^2+CH^2\)( định lý py-ta-go )

\(\Rightarrow10^2=AH^2+6^2\)

\(\Rightarrow AH^2=10^2-6^2\)

\(\Rightarrow AH^2=64\)

\(\Rightarrow AH=\sqrt{64}\)

\(\Rightarrow AH=8cm\)

Vậy \(AH=8cm\)

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
VP
Xem chi tiết
NT
27 tháng 5 2022 lúc 19:17

a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔABI có 
AH là đường cao

AH là đường trung tuyến

Do đó: ΔABI cân tại A

Bình luận (0)
HC
Xem chi tiết
TP
21 tháng 3 2022 lúc 17:31

undefined

a) Xét tam giác AHB và AHC có:

AC = BC (gt)

\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)

=> AHB = AHC (ch-gv)

=> HB = HC (cạnh tương ứng)

\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)

b) Ta có HB =  HC (cmt)

Mặt khác AH là cạnh góc vuông của tam giác vuông AHC

Áp dụng định lý Pitago ta có:

\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)

\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)

Bình luận (1)