Tính giá trị của biểu thức A=5x2+6x-2 biết |x-1|=2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị của biểu thức A = 5 x 2 - 3 x - 16 tại x = -2
Thay x = -2 vào biểu thức A ta có
A = 5.(-2)2 - 3.(-2) - 16 = 10 (1 điểm)
Cho số s.y thỏa mãn đẳng thức: 5x2+5x2+8xy-2x+2y+2=0. tính giá trị của biểu thức M=(x-y)2023-(x-2)2024+(y+1)2023.
Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)
\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)
\(=2^{2023}-1\)
bài 5 tính giá trị của biểu thức
a) A=-x3 + 6x2 -12x + 8 tại x=-28
b) B=8x3+12x2 + 6x + 1 tại x=\(\dfrac{1}{2}\)
bài 6
a)tính bằng cách hợp lí 113 -1
b) tính giá trị biểu thức x3 - y3 biết x-y =6 x.y=9
Bài 5
a) A = -x³ + 6x² - 12x + 8
= -x³ + 3.(-x)².2 - 3.x.2² + 2³
= (-x + 2)³
= (2 - x)³
Thay x = -28 vào A ta được:
A = [2 - (-28)]³
= 30³
= 27000
b) B = 8x³ + 12x² + 6x + 1
= (2x)³ + 3.(2x)².1 + 3.2x.1² + 1³
= (2x + 1)³
Thay x = 1/2 vào B ta được:
B = (2.1/2 + 1)³
= 2³
= 8
Bài 6
a) 11³ - 1 = 11³ - 1³
= (11 - 1)(11² + 11.1 + 1²)
= 10.(121 + 11 + 1)
= 10.133
= 1330
b) Đặt B = x³ - y³ = (x - y)(x² + xy + y²)
= (x - y)(x² - 2xy + y² + 3xy)
= (x - y)[(x - y)² + 3xy]
Thay x - y = 6 và xy = 9 vào B ta được:
B = 6.(6² + 3.9)
= 6.(36 + 27)
= 6.63
= 378
Bài 6 :
a) \(11^3-1=\left(11-1\right)\left(11^2+11+1^2\right)\)
\(\)\(=10.\left(121+12\right)\)
\(=10.133\)
\(=1330\)
b) \(\left\{{}\begin{matrix}x-y=6\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2xy=36\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2.18=36\\xy=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=72\\xy=9\end{matrix}\right.\)
Ta có :
\(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)
\(=6.\left(72+9\right)\)
\(=6.81\)
\(=486\)
Cho biểu thức 5x2 + 3x – 1. Tính giá trị của biểu thức tại: x = -1
Thay x = -1 vào biểu thức, ta có:
5.(-1)2 + 3.(-1) – 1 = 5.1 – 3 – 1 = 1
Vậy giá trị của biểu thức 5x2 + 3x – 1 tại x = -1 là 1
Cho biểu thức A = (6x+1)2 – (6x+1)(6x-1)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x = -5
a: \(A=36x^2+12x+1-36x^2+1=12x+2\)
Tính giá trị của biểu thức B(x) tại x=2 biết 3B(x)+B(-1)=6x-22
3B(x)+B(-1)=6x-22
=>3B(-1)+B(-1)=-6-22=-28
=>B(-1)=-7
3B(2)+B(-1)=6*2-22
=>3B(2)-7=12-22=-10
=>3B(2)=-10+7=-3
=>B(2)=-1
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)