Xác định m để \(\dfrac{x+m}{x+1}\) +\(\dfrac{x-2}{x}\) =2 vô nghiệm
Xác định n để phương trình sau vô nghiệm
\(\dfrac{x+n}{x+1}+\dfrac{x-2}{x}=2\)
GIÚP MIK VỚI CẢM ƠN Ạ
để pt trên vô nghiệm thì x sẽ bằng -1
\(\dfrac{x\left(x+n\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}=0\)
\(x^2+xn+x^2+x-2x-2-2x^2-2x=0\)
thay x = -1 để tìm n:
\(\left(-1\right)^2-n+\left(-1\right)^2-1-2.\left(-1\right)-2-2.\left(-1\right)^2-2.\left(-1\right)=0\)
\(1-n+1-1=0\)
\(1-n=0\)
=> n = 1 thì pt vô nghiệm.
Yên tâm cj thay n= 1 vô tìm x giải ra x = -1(ktm) pt vô nghiệm r.
Xác định m để phương trình : \(\dfrac{2}{x+1}-\dfrac{m}{x-2}=0\) có nghiệm
`2/(x+1)-m/(x-2)=0(x\ne-1,x\ne2)`
`<=>2/(x+1)=m/(x-2)`
`<=>2(x-2)=m(x+1)`
`<=>2x-4=mx+m`
`<=>mx-2x=-m-4`
`<=>x(m-2)=-4-m`
Để pt có nghiệm
`=>m-2ne0=>m ne 2`
`=>x=(-4-m)/(m-2)`
`x ne -1=>(-4-m)/(m-2)\ne-1`
`=>(-m-4)/(m-2)+1\ne0`
`<=>-2/(m-2) ne 0` luôn đúng với m khác 2
`x ne 2=>(-4-m)/(m-2)\ne2`
`=>(-m-4)/(m-2)-2 \ne 0`
`=>(-3m-8)/(m-2)\ne0`
`=>-3m-8\ne0`
`=>m\ne-8/3`
Vậy với `m ne 2` và `m ne -8/3` thì pt có nghiệm
Đk: \(\left\{{}\begin{matrix}x+1\ne0\\x-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
Pt: \(\Rightarrow2\left(x-2\right)-m\left(x+1\right)=0\)
\(\Rightarrow2x-4-mx-m=0\) \(\Rightarrow x\left(2-m\right)=m+4\)
\(\Rightarrow x=\dfrac{m+4}{2-m}\)
Mà \(x\ne-1vàx\ne2\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{2-m}\ne-1\\\dfrac{m+4}{2-m}\ne2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4\ne-2\left(luônđúng\right)\\m\ne0\end{matrix}\right.\)
Vậy với \(m\ne0\) thì pt có nghiệm.
tìm m để phương trình \(\dfrac{x+1}{x+2}\) = \(\dfrac{x-1}{x-m}\) vô nghiệm
\(\dfrac{x+1}{x+2}=\dfrac{x-1}{x-m}\)
\(\Leftrightarrow\left(x+1\right)\left(x-m\right)=\left(x+2\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-xm+x-m=x^2+x-2\)
\(\Leftrightarrow-xm+2=0\)
Để pt vô nghiệm thì \(a\ne0\) nhưng trong TH này \(a=0\)
Vậy m không xác định
tìm m để phương trình vô nghiệm:
\(\dfrac{m}{1+m\text{x}}+\dfrac{1}{1-m\text{x}}=\dfrac{1}{1-m^2\text{x}^2}\)
PT \(\Leftrightarrow\dfrac{m\left(1-mx\right)+1+mx}{\left(1+mx\right)\left(1-mx\right)}=\dfrac{1}{\left(1-mx\right)\left(1+mx\right)}\)
\(\Rightarrow m-m^2x+1+mx=1\)
\(\Leftrightarrow x\left(m-m^2\right)+m=0\)
Để phương trình vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m-m^2=0\\m\ne0\end{matrix}\right.\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
Cho phương trình \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)
Tìm giá trị m để phương trình vô nghiệm
Cho phương trình \(\dfrac{x+2}{x-m}-1=\dfrac{2}{x-1}\).Tìm m để phương trình
a)có nghiệm duy nhất. b)vô nghiệm
Xác định các giá trị của m để phương trình \(x^2-x+1-m=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
\(x^2-x+1-m=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=1\\x_1x_2=\dfrac{c}{a}=1-m\end{matrix}\right.\)
Ta có :
\(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)
\(\Leftrightarrow5\left(\dfrac{x_2+x_1}{x_1x_2}\right)-x_1x_2+4=0\)
\(\Leftrightarrow5\left(\dfrac{1}{1-m}\right)-\left(1-m\right)+4=0\)
\(\Leftrightarrow\dfrac{5}{1-m}-1+m+4=0\)
\(\Leftrightarrow\dfrac{5}{1-m}+m+3=0\)
\(\Leftrightarrow\dfrac{5+m\left(1-m\right)+3\left(1-m\right)}{1-m}=0\)
\(\Leftrightarrow5+m-m^2+3-3m=0\)
\(\Leftrightarrow-m^2-2m+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Xác định m để pt có 2 nghiệm x1,x2 thỏa mãn ĐK kèm theo:
x2 - (m + 2)x + 2 = 0 ( \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\))
Tìm giá trị của tham số m để pt x2 - 2(m+2)x + m2 + 4 = 0 có 2 nghiệm x1,x2 thỏa mãn hệ thức x1 + 2x2 = 7
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
xem tr sách của anh
Bài 1:
PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)
Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)
Tìm m để phương trình:
m.\(\sqrt{x-1}\)+\(\dfrac{1}{\sqrt{x-1}}\)=\(\dfrac{x}{m\sqrt{x-1}}\) vô nghiệm
ĐKXĐ: \(x>1\)
- Với \(m=0\) thỏa mãn
- Với \(m\ne0\)
\(\Rightarrow m^2\left(x-1\right)+m=x\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2-m\) (1)
Pt đã cho vô nghiệm khi:
TH1: (1) vô nghiệm \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m^2-1=0\\m^2-m\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)
TH2: (1) có nghiệm thỏa mãn \(x\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m^2-m}{m^2-1}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{m}{m+1}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\\dfrac{1}{m+1}\ge0\end{matrix}\right.\) \(\Leftrightarrow m>-1\)
Vậy pt vô nghiệm khi \(m\ge-1\)
cho pt x² - 2(2m-1)x+4m²=0 a) xác định m để pt có 2 nghiệm phân biệt b) xác định m để pt vô nghiệm c) giải pt với m=2 Mọi người giúp em với ạ.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2