Giải pt lg sau : 3sin²x - 2√3.sinx.cosx - 3cos²x = 0.
Giải PT
a) 3cos26x + 8sin 3x cos 3x - 4 =0
b) sinx + 4cos2x + 1 = 0
c) \(\frac{1}{cos^2x}\)+ tanx - 1 = 0
d) sin x + 3sin\(\frac{x}{2}\)= 0
Giải các phương trình sau:
a.\(2sin^3x+4cos^3x=3sinx\)
b.\(3sin^2\frac{x}{2}cos\left(\frac{3\pi}{2}+\frac{x}{2}\right)+3sin^2\frac{x}{2}cos\frac{x}{2}=sin\frac{x}{2}cos^2\frac{x}{2}+sin^2\left(\frac{x}{2}+\frac{\pi}{2}\right)\)
c.\(4sin^3x+3sin^2xcosx-sinx-cos^3x=0\)
d.sin4x-3sin 2xcos2x-4sinxcos3x-3cos4x=0
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
mọi người giúp hộ mình nhanh với
a.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(2tan^3x+4=3tanx\left(1+tan^2x\right)\)
\(\Leftrightarrow2tan^3x+4=3tanx+3tan^3x\)
\(\Leftrightarrow tan^3x+3tanx-4=0\)
\(\Leftrightarrow\left(tanx-1\right)\left(tan^2x+tanx+4\right)=0\)
\(\Leftrightarrow tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\)
Giải các pt sau:
1) 4sin22x - 5/2sin4x - 6cos22x=0
2) 3sin2x + 4sin2x + (8√3 - 9)cos2x =0
Gỉai nghiệm của phương trình: y= 3cos + 3sin(x+\(\dfrac{\pi}{7}\)) = 0
\(3cosx+3sin\left(x+\dfrac{\pi}{7}\right)=0\)
\(\Leftrightarrow cosx+cos\left(\dfrac{5\pi}{14}-x\right)=0\)
\(\Leftrightarrow2cos\dfrac{5\pi}{28}.cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow cos\left(x-\dfrac{5\pi}{28}\right)=0\)
\(\Leftrightarrow x-\dfrac{5\pi}{28}=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{19\pi}{28}+k\pi\)
giải pt lượng giác sau:
\(\frac{4cosx.cos^2\left(x+\frac{\pi}{2}\right)-sin\left(x+\frac{\pi}{6}\right)}{cos^2x-3sin^2x}=0\)
Mọi người giúp đỡ nhé :3
giải pt \(cos\left(2x+\frac{2\pi}{3}\right)+3cos\left(x+\frac{\pi}{3}\right)+2=0\)
\(\Leftrightarrow2cos^2\left(x+\frac{\pi}{3}\right)-1+3cos\left(x+\frac{\pi}{3}\right)+2=0\)
\(\Leftrightarrow2cos^2\left(x+\frac{\pi}{3}\right)+3cos\left(x+\frac{\pi}{3}\right)+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x+\frac{\pi}{3}\right)=-1\\cos\left(x+\frac{\pi}{3}\right)=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\pi+k2\pi\\x+\frac{\pi}{3}=\frac{2\pi}{3}+k2\pi\\x+\frac{\pi}{3}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm m để PT sau có nghiệm
sin3x + 3sin2x + 4sinx + 2 - m3 - m = 0
\(\Leftrightarrow\left(sinx+1\right)^3-m^3+\left(sinx+1-m\right)=0\)
\(\Leftrightarrow\left(sinx+1-m\right)\left[\left(sinx+1+\frac{m}{2}\right)^2+\frac{3m^2}{4}+1\right]=0\)
\(\Leftrightarrow sinx+1-m=0\)
\(\Leftrightarrow m=sinx+1\)
Mà \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)
\(\Rightarrow0\le m\le2\)
Giải pt
sin x.cos x + 2sin x+sin^2 x= 3 +3cos x
\(\Leftrightarrow sinx.cosx+2sinx+\left(1-cos^2x-3cosx-3\right)=0\)
\(\Leftrightarrow sinx\left(cosx+2\right)-\left(cosx+1\right)\left(cosx+2\right)=0\)
\(\Leftrightarrow\left(sinx-cosx-1\right)\left(cosx+2\right)=0\)
\(\Leftrightarrow sinx-cosx=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
Giải phương trình lượng giác sau: ( dạng pt bậc nhất theo sin và cos )
3cosx + 4sinx + 6/3cosx+ 4sinx+1 =2
Đề như vậy hả bạn: \(\frac{3cosx+4sinx+6}{3cosx+4sinx+1}=2\)