Cho A= n3 +3n2 + 5n+3.
CMR: A ⋮3 ∀ n ∈ Z+
A=n3+3n2+5n+3
Chứng minh A ⋮ 3 với mọi n ϵ N*
A=n^3+3n^2+5n+3
<=>A=n^3+n^2+2n^2+2n+3n+3
<=>A=(n^2+2n+3)(n+1)
<=>A=n(n+1)(n+2)+3(n+1)
Ta thấy, n(n+1)(n+2) là tích ba số nguyên liên tiếp nên n(n+1)(n+2) chia hết cho 6 hay n(n+1)(n+2) chia hết cho 3(1)
Mặt khác, 3(n+1) luôn chia hết cho 3 với mọi x là số nguyên(2)
Từ (1) và (2)
=>n(n+1)(n+2)+3(n+1) chia hết cho 3
Đặt B=n^3+3n^2+5n
Khi n=1 thì B=1+3+5=9 chia hết cho 3
Khi n>1 thì Giả sử B=n^3+3n^2+5n chiahết cho 3
Ta cần chứng minh (n+1)^3+3(n+1)^2+5(n+1)chia hết cho 3
=n^3+3n^2+3n+1+3n^2+6n+3+5n+5
=n^3+3n^2+5n+3n^2+9n+9 chia hêt cho 3
=>B chia hết cho 3
=>A chia hết cho 3
1. Tìm n ϵ Z, biết :
a, n2 - 2n + 3 ⋮ n + 4
b, 3n2 + n + 16 ⋮ n + 5n
c, n3 + n - 5n - 2 ⋮ n + 3
d, n + 4 ⋮ 3 - n
e, 2n + 1 ⋮ 5 - n
Giúp mình với thứ 7 mình phải nộp rồi ạ !
Viết lời giải ra giúp mình nhé !
Chứng minh rằng với n ∈ N * : n 3 + 3 n 2 + 5 n chia hết cho 3
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Cho A = n3+3n2+2n. Chứng minh rằng A chia hết cho 3 với mọi số nguyên n
A=n3+n2+2n2+2n
=n2(n+1)+2n(n+1)
=(n+1)(n2+2n)
=n(n+1)(n+2)
Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
=>n(n+1)(n+2) luôn chia hết cho 3 với mọi
=>A luôn chia hết cho 3 với mọi số nguyên n.
Tính giá trị biểu thức:
a) M = m 2 ( m + n ) - n 2 m - n 3 tại m = -2017 và n = 2017;
b) N = n 3 - 3 n 2 - n(3 - n) tại n = 13.
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Cho A = n3+3n2+2n. Tìm giá trị nguyên dương của n với n<10 để A chia hết cho 15
Chứng minh rằng với mọi n∈n* ta có n3+3n2+5n.chia hết cho 3