Violympic toán 8

JL

Cho A= n3 +3n2 + 5n+3.

CMR: A ⋮3 ∀ n ∈ Z+

KB
8 tháng 2 2019 lúc 15:18

\(A=n^3+3n^2+5n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow...+3\left(n+1\right)⋮3\)

hay \(A⋮3\left(đpcm\right)\)

Bình luận (0)
H24
8 tháng 2 2019 lúc 14:29

\(A=n^3+3n^2+6n-\left(n+3\right)+6\)

\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)

Có: \(n+3\equiv n\)(mod 3)

\(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)

nên \(A⋮3\forall n\in Z^+\)

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
DL
Xem chi tiết
WL
Xem chi tiết
BB
Xem chi tiết
PH
Xem chi tiết