Những câu hỏi liên quan
MD
Xem chi tiết
TH
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Bình luận (0)
NL
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
HN
Xem chi tiết
NL
21 tháng 4 2023 lúc 20:57

Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)

Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được

Bình luận (1)
NL
21 tháng 4 2023 lúc 22:15

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)

\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)

\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)

\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)

\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)

Bình luận (1)
H24
Xem chi tiết
NV
3 tháng 1 2021 lúc 21:41

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

Bình luận (0)
LD
Xem chi tiết
LA
Xem chi tiết
VH
Xem chi tiết
NL
9 tháng 4 2021 lúc 22:13

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)

Bình luận (0)
TN
Xem chi tiết
VH
Xem chi tiết
TA
Xem chi tiết