\(CMR:\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết
\(abc=1\)
CMR :
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}=\frac{a-b}{1+ab}-\frac{b-c}{1+bc}-\frac{c-a}{1+ac}\)
Là đương nhiên hai biểu thức trên bằng nhau , giống nhau y hệt
Cho abc = 1. CMR:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)
Đề:
Cho biết abc = 1. Chứng minh rằng:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số.
Giải:
Thay 1 = abc vào biểu thức trên, ta có:
\(\frac{a}{ab+a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+abc}\)
\(=\frac{a}{a\left(b+1+ab\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{c\left(a+1+ab\right)}\)
\(=\frac{1}{b+1+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b+abc+ab}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{abc}{b\left(1+ac+a\right)}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac}{1+ac+a}+\frac{1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+1+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c+abc+ac}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{1}{a+1+ab}\)
\(=\frac{ac+1}{c\left(1+ab+a\right)}+\frac{c}{c\left(a+1+ab\right)}\) \(MTC:c\left(a+1+ab\right)\)
\(=\frac{ac+1+c}{c\left(1+ab+a\right)}\)
\(=\frac{ac+abc+c}{c+abc+ac}\)
\(=1\)
Vậy \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\) là hằng số khi abc = 1 (đpcm)
Trịnh Trân Trân <3
Tính a ; b ; c thỏa mãn biết abc = 1
CMR : \frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}=1
Ta có: \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{bc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{bc+b+1}{bc+b+1}=1\left(đpcm\right)\)
CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ac} + \frac{1}{3} \geq \frac{8}{9}(\frac{a}{b+c} + \frac{b}{a+c} +\frac{c}{a+b})\)
CMR:\((1+a+b+c)(1+ab+bc+ac) \geq 4\sqrt{2(a+bc)(b+ac)(c+ab)}\)
Cho abc=1
CMR: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+a+1}=1\)
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
sao cậu đánh được dấu phân số hay vậy. Tớ bấm hoài mà không thấy
CMR: \(\frac{a}{ab+a+1}=\frac{b}{bc+b+1}=\frac{c}{ca+c+1}=1\) biết abc=1
\(A=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Từ \(abc=1\Rightarrow a=\frac{1}{bc}\) thay vào ta có:
\(A=\frac{\frac{1}{bc}}{\frac{1}{bc}\cdot b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{c\cdot\frac{1}{bc}+c+1}\)
\(=\frac{\frac{1}{bc}}{\frac{1}{c}+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{c}{\frac{1}{b}+c+1}\)
\(=\frac{1}{bc\left(\frac{1}{bc}+\frac{1}{c}+1\right)}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=1\)
Cho a,b,c>0 và a+b+c\(\le\)6
CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}+\frac{1}{abc}\ge\frac{19}{8}\)
Cho tam giác ABC biết \(\widehat{A}=2\widehat{B}=4\widehat{C.}\) \(CMR:\frac{1}{AB}=\frac{1}{AC}+\frac{1}{BC}.\)