Những câu hỏi liên quan
PA
Xem chi tiết
MH
24 tháng 9 2021 lúc 19:26

\(T=\dfrac{8x+12}{x^2+4}=\dfrac{-\left(x^2+4\right)+\left(x^2+8x+16\right)}{x^2+4}\)

\(=\dfrac{\left(x+4\right)^2}{x^2+4}-1\text{≥}-1\)

Vậy Min\(=-1\text{⇔}x=-4\)

Bình luận (2)
MH
24 tháng 9 2021 lúc 19:31

\(T=\dfrac{8x+12}{x^2+4}=\dfrac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}\)

\(=-\dfrac{4\left(x-1\right)^2}{x^2+4}+4\text{≤}4\)

\(Max=4\)\(x=1\)

Bình luận (0)
EC
24 tháng 9 2021 lúc 19:34

Ta có: \(T=\dfrac{8x+12}{x^2+4}=\dfrac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}=4-\dfrac{4\left(x-1\right)^2}{x^2+4}\le4\)

Dấu "=" xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

 

Bình luận (0)
NL
Xem chi tiết
NH
Xem chi tiết
MT
11 tháng 12 2016 lúc 22:33

\(\frac{7}{4}\) 

Bình luận (0)
NH
12 tháng 12 2016 lúc 12:41

mình cũng ra kết quả như vậy

Bình luận (0)
TN
Xem chi tiết
NT
24 tháng 10 2016 lúc 10:23

B = 4x - x2

B = -(x2 - 4x)

B = -(x2 - 2.2x + 4 - 4)

B = -(x - 2)2 + 4

Vi -(x - 2)2 <= 0 voi moi x

=> -(x - 2) + 4 <= 4

Dau "=" xay ra <=> x - 2 = 0

                        <=> x       = 2

Vay GTLN cua B la 4 khi va chi khi x = 2

Bình luận (0)
TH
Xem chi tiết
NL
13 tháng 11 2018 lúc 7:54

Tất cả 3 bài này đều chung một dạng, bậc tử lớn hơn bậc mẫu nên đều không tồn tại GTLN mà chỉ tồn tại GTNN. Cách tìm thường là chia tử cho mẫu rồi khéo léo thêm bớt để sử dụng BĐT Cô-si

a) \(P=\dfrac{x+4}{4\sqrt{x}}=\dfrac{\sqrt{x}}{4}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\dfrac{\sqrt{x}}{4}\dfrac{1}{\sqrt{x}}}=2.\dfrac{1}{2}=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}}{4}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=4\)

b) \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{2}+\dfrac{2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{2}+\dfrac{2}{\sqrt{x}+1}-1\)

\(\Rightarrow P\ge2\sqrt{\dfrac{\left(\sqrt{x}+1\right)}{2}\dfrac{2}{\left(\sqrt{x}+1\right)}}-1=2-1=1\)

\(\Rightarrow P_{min}=1\) khi \(\dfrac{\sqrt{x}+1}{2}=\dfrac{2}{\sqrt{x}+1}\Leftrightarrow x=1\)

c)ĐKXĐ: \(x\ge0\Rightarrow\) \(P=\dfrac{x-4}{\sqrt{x}+1}=\sqrt{x}-1-\dfrac{3}{\sqrt{x}+1}\)

\(P_{min}\) khi \(\dfrac{3}{\sqrt{x}+1}\) đạt max \(\Rightarrow\sqrt{x}+1\) đạt min, mà \(\sqrt{x}+1\ge1\) \(\forall x\ge0\) , dấu "=" xảy ra khi \(x=0\)

\(\Rightarrow P_{min}=-4\) khi \(x=0\)

Bình luận (0)
NA
Xem chi tiết
LL
23 tháng 9 2021 lúc 8:54

a) \(ĐK:x\ge0,x\ne1\)

 \(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Kết hợp với đk:

\(\Rightarrow0\le x< 1\)

Bình luận (1)
BB
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NK
5 tháng 2 2021 lúc 8:46

\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\\ A\in Z\Rightarrow1+\dfrac{2}{\sqrt{x}-1}\in Z\Rightarrow\dfrac{2}{\sqrt{x}-1}\in Z\\ \Leftrightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)\\ \Leftrightarrow\left(\sqrt{x}-1\right)\in\left\{2;1;-1;-2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;2;0;-1\right\}\\ \Leftrightarrow x\in\left\{9;4;0\right\}\)

Vậy \(x\in\left\{9;4;0\right\}\)

Bình luận (0)