Những câu hỏi liên quan
NH
Xem chi tiết
LH
26 tháng 7 2021 lúc 22:34

thiếu đề

Bình luận (0)
ND
Xem chi tiết
H24
Xem chi tiết
H24
29 tháng 3 2020 lúc 16:51

ai giúp mình với ạ

Bình luận (0)
 Khách vãng lai đã xóa
NN
1 tháng 4 2020 lúc 14:57

A B C M O D

a . i ) Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO 

Tương tự : = > DMOB nội tiếp 

ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)

Tương tự OD là phân giác \(\widehat{BOM}\)

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)

Ta có : CMOA , OBDM nội tiếp 

\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O) 

b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O) 

Mà \(DM=DB\Rightarrow\Delta DMB\) đều 

Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)

\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)

\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
H24
Xem chi tiết
IS
29 tháng 3 2020 lúc 21:29

a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)

=> tứ giác AOMC nội tiếp đường tròn đường kính OC

tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)

=> tứ giác BOMD nội tiếp đường tròn đường kính OD

ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)

\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )

=>\(\widehat{OBM}=\widehat{AOC}\)

=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)

=>\(OC\perp OD\)(dpcm)

ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )

\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)

\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)

zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM

b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)

mà  tam giác DBM cân tại D ( t/c  2  tiếp tuyến cát nhau )

=> tam giác DBM đều (dpcm)

+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )

gọi S là diện tích cần tìm 

\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 3 2020 lúc 11:08

cho mình xin hình ạ

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LH
26 tháng 7 2021 lúc 23:39

Ta có I(1;-1)⇒R=\(\sqrt{10}\)

Gọi tt có dạng là: Ax + By +c = 0

d(I;d)=\(\dfrac{\left|2-1+c\right|}{\sqrt{2^2+1^2}}=R\)\(\left\{{}\begin{matrix}c=-1+5\sqrt{2}\\c=-1-5\sqrt{2}\end{matrix}\right.\)

 

cos45=\(\dfrac{\sqrt{2}}{2}\)=\(\dfrac{\left|A2+B\right|}{\left(\sqrt{A^2+B^2}\right)\left(2^2+1\right)}\)\(\Leftrightarrow\)\(10\left(A^2+B^2\right)=4\left(2A+B\right)^2\)

⇒6\(A^2+16AB-6B^2\)=0

Chọn A=0⇒\(\left\{{}\begin{matrix}B=0\\B=\dfrac{8}{3}\end{matrix}\right.\)\(\Rightarrow\)pt tiếp tuyến : \(\dfrac{8}{3}y-1+5\sqrt{2}\) hoặc \(\dfrac{8}{3}-1-5\sqrt{2}\)

chọn B=0\(\Rightarrow\)\(\left\{{}\begin{matrix}A=0\\A=-\dfrac{8}{3}\end{matrix}\right.\)\(\Rightarrow\)\(-\dfrac{8}{3}y-1-5\sqrt{2}\) hoặc \(-\dfrac{8}{3}y-1+5\sqrt{2}\)

Bình luận (1)
LH
26 tháng 7 2021 lúc 23:43

Sửa lại nha bạn

Bình luận (0)
LH
27 tháng 7 2021 lúc 8:39

chọn A=1\(\Rightarrow\)\(\left\{{}\begin{matrix}B=3\\B=\dfrac{-1}{3}\end{matrix}\right.\)\(\Rightarrow\)3y-1\(+5\sqrt{2}=0\) hoặc \(\dfrac{-1}{3}y-1-5\sqrt{2}=0\)

 

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 12 2021 lúc 22:17

Chọn D

Bình luận (0)
CH
Xem chi tiết
LL
Xem chi tiết