Trong trường hợp nào thì hai đường tròn có số tiếp tuyến chung nhiều nhất
Bài 1. Cho đường tròn . Hãy lập phương trình tiếp tuyến với biết tiếp tuyến tạo với đường thẳng một góc trong các trường hợp sau:
1/ .
2/ .
Từ một điểm A ở ngoài dường 9tron2 (O) vẽ hai tiếp tuyến AB,AC và cát tuyến AMN của đường tròn đó. Gọi I là trung điểm của dây MN.
a. cm 5 điểm A,B,I,O,C cùg nằm trên 1 đường thẳng
b. nếu aB=OB thì tứ giác ABOC là hình gì?tại sao?tính diện tích hình tròn và độ dài đường tròn ngoại tiếp tứ giác ABOC theo bán kíh R của đường tròn (O) trong trường hợp này.
cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.
a) chứng minh rằng :
i) các tứ giác AOMC và BOMD nội tiếp
ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM.
b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R
ai giúp mình với ạ
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
Cho hai đoạn thẳng AB, CD trong đó có bốn A, B, C, D không nằm trên một đường thẳng. Hai đoạn thẳng đó có nhiều nhất mấy điểm chung? vẽ hình minh hoạ cho các trường hợp đó
cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.
a) chứng minh rằng :
i) các tứ giác AOMC và BOMD nội tiếp
ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM.
b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R
a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)
=> tứ giác AOMC nội tiếp đường tròn đường kính OC
tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)
=> tứ giác BOMD nội tiếp đường tròn đường kính OD
ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)
\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )
=>\(\widehat{OBM}=\widehat{AOC}\)
=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)
=>\(OC\perp OD\)(dpcm)
ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )
\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)
\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)
zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM
b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)
mà tam giác DBM cân tại D ( t/c 2 tiếp tuyến cát nhau )
=> tam giác DBM đều (dpcm)
+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )
gọi S là diện tích cần tìm
\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )
cho mình xin hình ạ
Bài 1. Cho đường tròn . Hãy lập phương trình tiếp tuyến với biết tiếp tuyến tạo với đường thẳng một góc trong các trường hợp sau:
1/ \(\left(C\right):\left(x-1\right)^2+\left(y+1\right)^2=10,\alpha=45^0;d:2x++y-4=0\)
2/ \(\left(C\right)x^2+y^2+4x-8y+10=0;cos\alpha=\dfrac{1}{\sqrt{10}};d:x-3y+1=0\)
.
Ta có I(1;-1)⇒R=\(\sqrt{10}\)
Gọi tt có dạng là: Ax + By +c = 0
d(I;d)=\(\dfrac{\left|2-1+c\right|}{\sqrt{2^2+1^2}}=R\)⇒\(\left\{{}\begin{matrix}c=-1+5\sqrt{2}\\c=-1-5\sqrt{2}\end{matrix}\right.\)
cos45=\(\dfrac{\sqrt{2}}{2}\)=\(\dfrac{\left|A2+B\right|}{\left(\sqrt{A^2+B^2}\right)\left(2^2+1\right)}\)\(\Leftrightarrow\)\(10\left(A^2+B^2\right)=4\left(2A+B\right)^2\)
⇒6\(A^2+16AB-6B^2\)=0
Chọn A=0⇒\(\left\{{}\begin{matrix}B=0\\B=\dfrac{8}{3}\end{matrix}\right.\)\(\Rightarrow\)pt tiếp tuyến : \(\dfrac{8}{3}y-1+5\sqrt{2}\) hoặc \(\dfrac{8}{3}-1-5\sqrt{2}\)
chọn B=0\(\Rightarrow\)\(\left\{{}\begin{matrix}A=0\\A=-\dfrac{8}{3}\end{matrix}\right.\)\(\Rightarrow\)\(-\dfrac{8}{3}y-1-5\sqrt{2}\) hoặc \(-\dfrac{8}{3}y-1+5\sqrt{2}\)
chọn A=1\(\Rightarrow\)\(\left\{{}\begin{matrix}B=3\\B=\dfrac{-1}{3}\end{matrix}\right.\)\(\Rightarrow\)3y-1\(+5\sqrt{2}=0\) hoặc \(\dfrac{-1}{3}y-1-5\sqrt{2}=0\)
Câu 3
Xét các khẳng định sau:
(1). Hai đường tròn khác nhau chỉ có thể rơi vào một trong ba trường hợp: không giao nhau; tiếp xúc nhau; và cắt nhau tại hai điểm phân biệt.
(2). Đường nối tâm OO' của hai đường tròn là trục đối xứng của hai đường tròn đó.
(3). Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm.
(4). Nếu hai đường tròn cắt nhau thì hai giao điểm A và B đối xứng nhau qua đường nối tâm. Ta có OO' chính là đường trung trực của AB.
Chỉ có (1) sai
Chỉ có (2) sai
Chỉ có (3) sai
Chỉ có (4) sai
Tất cả đều đúng
cho đường tròn(O;R) có hai đường kính AB và CD vuông góc.Lấy điểm E bất kì trên OA nối CE cắt đường tròn tại F.Qua F dựng tiếp tuyến Fx với đường tròn, qua E dựng Ey vuông góc với OA.Gọi I là giao điểm của Fx và Ey.
a) CM tứ giác IEOF nội tiếp
b)Tứ giác CEIO là hình j?Vì sao?
c)KHi E chuyển động trên AB thì I chuyển động trên đường nào
Cho hai đường tròn (O;2cm)và (O;3cm);OO'=16cm
a)xác định vị trí tương đối của hai đường tròn (O)và (O')
b)vẽ đường tròn (O';1cm),kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm).Tia O'A cắt đường tròn (O';3cm) tại B.Kẻ bán kính OC của đường tròn (O;2cm) song song với O'B.Điểm B,C thuộc một nửa mặt phẳng có bờ là OO'.chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O;2cm)và (O';3cm)
c)Tính độ dài BC
d)gọi I là giao điểm của BC và OO'.Tính IO