Những câu hỏi liên quan
AN
Xem chi tiết
HG
6 tháng 7 2016 lúc 16:32

 \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)

Có: \(\sqrt{16}>\sqrt{14}\)

\(\sqrt{33}>\sqrt{29}\)

=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

Bình luận (0)
AC
Xem chi tiết
NL
13 tháng 11 2016 lúc 21:48

Đại số lớp 7

Bình luận (1)
NN
5 tháng 6 2017 lúc 20:36

Giải:

\(4=\sqrt{16}\Rightarrow4+\sqrt{33}=\sqrt{16}+\sqrt{33}.\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{16}>\sqrt{14}_{\left(1\right).}\\\sqrt{33}>\sqrt{29}_{\left(2\right).}\end{matrix}\right.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\) suy ra: \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}.\)

Hay: \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}.\)

Vậy.....

~ Học tốt!!! ~

Bình luận (0)
CW
Xem chi tiết
NB
13 tháng 11 2016 lúc 15:31

Ta Đặt :

     A = 4 + \(\sqrt{33}\)

=> A2 = \(\left(4+\sqrt{33}\right).\left(4+\sqrt{33}\right)\)

=> A2 = 4 . 4 + 4 . \(\sqrt{33}\)\(\sqrt{33}\). 4 + \(\sqrt{33}\)\(\sqrt{33}\)

=> A2 = 16 + 2.4\(\sqrt{33}\)+33

=> A2 = 49 + 8\(\sqrt{33}\)                               

Đặt B = \(\sqrt{29}+\sqrt{14}\)

=> B2 = \(\left(\sqrt{29}+\sqrt{14}\right).\left(\sqrt{29}+\sqrt{14}\right)\)

=> B2 = \(\sqrt{29}\)\(\sqrt{29}\)\(\sqrt{29}\).\(\sqrt{14}\)\(\sqrt{14}\)\(\sqrt{29}\)\(\sqrt{14}\).\(\sqrt{14}\)

=> B2 = 29 + 2\(\sqrt{14}\).\(\sqrt{29}\)+ 14

=> B2 = 43 + 2\(\sqrt{14}\).\(\sqrt{29}\)

Ta có :

A = M + I

B = N + O

Đặt I = 49

Đặt O = 43

Vì 49 > 43 => I > O(1)

Đặt M = 2 . 4\(\sqrt{33}\)

=> M2 = 4 . 16 . 33  =  2112

Đặt N = 2\(\sqrt{14}\).\(\sqrt{29}\)

=> N2 = 4 . 14 . 29 = 1624

Vì M2 > N2 

=> M > N (2)

Từ (1) và (2) 

=> A > B

MỆT QUÁ ! CHO MÌNH TÍCH NHA MẤT KHOẢNG TIẾNG ĐỒNG HỒ 
ĐÂY LÀ CÁCH LÀM BÀI CỦA LỚP 7 MÌNH MỚI ĐƯỢC HỌC ĐẤY !
CÁCH LỚP 7 NÊN NÓ DÀI NHA BẠN ! THÔNG CẢM

Bình luận (0)
PT
13 tháng 11 2016 lúc 15:03

Sorry .i don't know

Bình luận (0)
TN
Xem chi tiết
AM
17 tháng 6 2015 lúc 15:30

Ta có:\(\sqrt{29}

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 10 2023 lúc 22:30

a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)

\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)

mà 49>43 và 528>406

nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)

=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

 

Bình luận (0)
HK
Xem chi tiết
NL
13 tháng 11 2016 lúc 14:48

Hỏi đáp Toán

Bình luận (0)
NL
13 tháng 11 2016 lúc 21:45

Đại số lớp 7

Bình luận (0)
HK
13 tháng 11 2016 lúc 13:34

Giúp mk vs, mk cần gấp!!!

Bình luận (0)
PH
Xem chi tiết
DH
12 tháng 11 2017 lúc 20:19

a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)

Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)

\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)

Bình luận (0)
NL
Xem chi tiết
AH
29 tháng 2 2020 lúc 19:16

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 3 2020 lúc 14:49

Lời giải:

a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$

Khi đó:

Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)

\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)

\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)

Vì $a,b,c>0\Rightarrow a+b+c>0$

$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$

Do đó:

$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$

$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$

b)

Có: $4=\sqrt{16}>\sqrt{14}$

$\sqrt{33}>\sqrt{29}$

Cộng theo vế:

$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
NN
9 tháng 3 2016 lúc 10:03

= nhau nha ban

Bình luận (0)
NN
9 tháng 3 2016 lúc 10:08

cài đầu tiên lớn hơn

Bình luận (0)