Những câu hỏi liên quan
H24
Xem chi tiết
PP
23 tháng 6 2017 lúc 14:55

Ta có:

\(x^3+y^3-xy=7\)

\(\left(x+y\right)^3-3xy\left(x+y\right)-xy=7\)

Thay x+y = 3 ta dc:

\(3^3-9xy-xy=7\)

\(-10xy=-20\)

\(xy=2\)

Vậy, tập hợp x, y thoả mãn đaẻng thức là: {x,y thuộc R/xy=2}

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 6 2021 lúc 16:17

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

Bình luận (0)
TQ
13 tháng 6 2021 lúc 17:34

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

Bình luận (1)
PS
Xem chi tiết
ZZ
13 tháng 1 2020 lúc 18:02

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
PS
13 tháng 1 2020 lúc 18:32

câu a làm cách khác đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NL
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

Bình luận (0)
H24
Xem chi tiết
PT
18 tháng 2 2018 lúc 21:25

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Bình luận (0)
YL
Xem chi tiết
LL
20 tháng 7 2021 lúc 22:01

Thực hiện quy đồng ta có :

9xy−1y=2+3x⇔9−x=2xy+3y9xy−1y=2+3x⇔9−x=2xy+3y

⇔4xy+2x+6y+3=21⇔4xy+2x+6y+3=21

Do x,y nguyên dương nên ta có:

⇔(2x+1)(2x+3)=21⇔\hept{2x+1=32y+3=7⇔\hept{x=1y=2

K mk vs đk ạ

Bình luận (0)
 Khách vãng lai đã xóa
KN
20 tháng 7 2021 lúc 22:06

\(\frac{9}{xy}-\frac{1}{y}=2+\frac{3}{x}\Rightarrow9-x=2xy+3y\Rightarrow y=\frac{9-x}{2x+3}\)

\(\Rightarrow2y=\frac{18-2x}{2x+3}=\frac{21}{2x+3}-1\inℕ^∗\Leftrightarrow\frac{21}{2x+3}\inℕ^∗,\frac{21}{2x+3}>1\)

\(\Rightarrow2x+3=1;3;7\Rightarrow x=-1;0;2\)----> Nhận \(x=2\Rightarrow y=\frac{9-x}{2x+3}=1\)

Vậy phương trình có nghiệm nguyên dương: (2;1).

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
TL
Xem chi tiết
AN
8 tháng 3 2017 lúc 13:40

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

Bình luận (0)
H24
11 tháng 3 2017 lúc 10:36

?????????????????????????

Bình luận (0)
VT
19 tháng 3 2017 lúc 11:25

Bình luận (0)
WR
Xem chi tiết
AN
1 tháng 4 2019 lúc 16:13

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

Bình luận (0)