Những câu hỏi liên quan
DH
Xem chi tiết
KS
24 tháng 7 2019 lúc 22:22

undefined

Bình luận (0)
NP
Xem chi tiết
DD
12 tháng 7 2017 lúc 8:03

\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)

\(=\left(2n-1\right).4.n\left(n-1\right)\)

\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)

\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)

\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)

Bình luận (0)
TT
Xem chi tiết
HN
21 tháng 7 2016 lúc 6:52

a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)

\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8  

b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)

Vì B chứa thừa số 4 nên B chia hết cho 4

Bình luận (0)
KK
Xem chi tiết
BL
2 tháng 7 2019 lúc 21:09

thêm đk \(n\in Z\) nha!

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left(4n^2-4n\right)\)

\(=\left(2n-1\right)\cdot4n\left(n-1\right)\)

+ \(\left(n-1\right)n\) là tích 2 số nguyên liên tiếp

\(\Rightarrow n\left(n-1\right)⋮2\Rightarrow4n\left(n-1\right)⋮8\)

\(\Rightarrow\left(2n-1\right)^2-\left(2n-1\right)⋮8\forall n\in Z\)

Bình luận (2)
KD
Xem chi tiết
H24
19 tháng 7 2019 lúc 8:28

\(\left(2n+3\right)^2-\left(2n-1\right)^2=4n^2+12n+9-4n^2+4n-1=16n+8=8\left(2n+1\right)⋮8\)

Bình luận (0)

\(\left(2n+3\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+3-2n+1\right)\left(2n+3+2n-1\right)\)

\(=4\left(4n-2\right)\)

\(=8\left(2x-1\right)\) Vì \(8⋮8\)

\(\Rightarrow8\left(2n-1\right)⋮(ĐPCM)\)

Bình luận (0)
PD
Xem chi tiết
PD
15 tháng 11 2017 lúc 21:47

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

Bình luận (0)
HA
Xem chi tiết
DN
8 tháng 10 2018 lúc 21:49

Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)

\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)

\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)

Bình luận (0)
VT
Xem chi tiết
NA
24 tháng 6 2016 lúc 20:46

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

Bình luận (0)
NL
Xem chi tiết
LF
14 tháng 7 2017 lúc 21:30

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Bình luận (0)
LD
14 tháng 7 2017 lúc 22:02

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)

Bình luận (0)