x+1/65+x+3/63=x+5/61+x+7/59
(x+1)/65+(x+3)/63=(x+5)/61+(x+7)/59
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}+\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+\dfrac{x+3}{63}-\dfrac{x+5}{61}-\dfrac{x+7}{59}=0\)
\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)-\left(\dfrac{x+5}{61}+1\right)-\left(\dfrac{x+7}{59}+1\right)\)
\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}+\dfrac{x+66}{61}+\dfrac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right).\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]\)\(=0\)
Do \(\dfrac{1}{65}< \dfrac{1}{63}< \dfrac{1}{61}< \dfrac{1}{59}\)
\(\Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)< 0\)
Vậy để \(\left(x+66\right).\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
Vậy \(x\in\left\{-66\right\}\)
x+1/65+x+3/63=x+5/61+x+7/59
x+1/ 65 + x+3/ 63 = x+ 5/ 61 + x+7/ 59
mỗi phân số cộng thêm 1 ta có
\(\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
rồi đặt x+66 làm thừa số chung sau đó giải tiếp
X - 1 / 65 + X - 3 / 63 = X - 5 / 61 +X -7 / 59
\(\frac{x-1}{65}+\frac{x-3}{63}=\frac{x-5}{61}+\frac{x-7}{59}\)
\(\Rightarrow\frac{x-1}{61}-1\frac{x-3}{63}+-1=\frac{x-5}{61}-1+\frac{x-7}{59}-1\)
\(\Rightarrow\frac{x-66}{65}+\frac{x-66}{63}=\frac{x-66}{61}+\frac{x-66}{59}\)
\(\Rightarrow\left(x-66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Rightarrow x=66\)
x-1/65+x-1/63=x-5/61+x-7/59
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
Giải phương trinh trên
\(\Leftrightarrow x+66=0\)
hay x=-66
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\\ \Rightarrow\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)=\left(\dfrac{x+5}{61}+1\right)+\left(\dfrac{x+7}{59}+1\right)\\ \Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}-\dfrac{x+66}{61}-\dfrac{x+66}{59}=0\\ \Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\\ \Rightarrow x+66=0\\ \Rightarrow x=-66\)
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\\ \dfrac{x+66}{65}+\dfrac{x+66}{63}-\dfrac{x+66}{61}-\dfrac{x+66}{59}=0\\ \left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\\ x+66=0\\ x=-66\)
Tìm x thỏa mãn x - 1 / 65 + ×-3/ 63 = ×- 5 / 61 + × -7/ 59
x-1/65 + x-3/63 = x-5/61 - x-7/59
Chú Ý: "/"có nghĩa là trên
(x - 1)/65 + (x - 3)/63 = (x - 5)/61 + (x - 7)/59
tương tự:
(x - 1)/65 - 1 + (x - 3)/63 - 1 = (x - 5)/61 - 1 + (x - 7)/59 - 1
Rút gọn được:
(x - 66) x (1/65 + 1/63) = (x - 66) x (1/61 + 1/59)
(x - 66) x (1/65 + 1/63 - 1/61 - 1/59) = 0
\(\Rightarrow\) x = 66
Mỗi phần cộng thêm số 1 ta có:
\(\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
Rồi đặt x + 66 làm thừa số chung.
giải pt : (x + 1)/65 + (x + 3)/63 = (x + 5)/61 + (x + 7)/59
<==> (x + 1)/65 + 1 + (x + 3)/63 + 1 = (x + 5)/61 + 1 + (x + 7)/59 + 1
<==> (x + 66)/65 + (x + 66)/63 = (x + 66)/61 + (x + 66)/59
<==> (x + 66) = 0
==> x = -66
\(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)
\(\Leftrightarrow\dfrac{x-1}{65}-1+\dfrac{x-3}{63}-1=\dfrac{x-5}{61}-1+\dfrac{x-7}{59}-1\)
\(\Leftrightarrow\dfrac{x-66}{65}+\dfrac{x-66}{63}=\dfrac{x-66}{61}+\dfrac{x-66}{59}\)
\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
\(\Leftrightarrow x-66=0\)
\(\Leftrightarrow x=66\)
Vậy x=66.