Những câu hỏi liên quan
MD
Xem chi tiết
TL
13 tháng 1 2018 lúc 21:07

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

Bình luận (0)
KN
12 tháng 7 2020 lúc 10:15

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
AH
9 tháng 9 2021 lúc 22:39

Lời giải:
a.

$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$

$=9x=9.15=135$

b.

$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$

$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$

c.

$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$

$=-8x^3+9x^2y^2-xy^3$

$=(-2x)^3+(3xy)^2-xy^3$

$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$

Bình luận (0)
HQ
Xem chi tiết
HN
11 tháng 3 2019 lúc 18:29

\(-x^5y^3-3x^4y^3+x^4y^3-4x^5y^3-6xy^2+5x^5y^3\)

Bậc của đa thức là: 8

Vì ở đây có 2 số mũ có tổng lớn nhất là 5 và 3

Mà 5 + 3 = 8

\(\Rightarrow\)Bậc của đa thức là: 8

Bình luận (0)
LD
Xem chi tiết
NT
24 tháng 3 2020 lúc 16:41

a) Ta có: \(3x^2+5y-3xy-5x\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) Ta có: \(3y^2-3z^2+3x^2+6xy\)

\(=3\left(y^2-z^2+x^2+2xy\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y-z\right)\left(x+y+z\right)\)

c) Ta có: \(x^2-25-2xy+y^2\)

\(=\left(x-y\right)^2-5^2\)

\(=\left(x-y-5\right)\left(x-y+5\right)\)

d) Ta có: \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

e) Ta có: \(x^2-5x+5y-y^2\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f) Ta có: \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
AH
16 tháng 3 2018 lúc 11:07

Lời giải:

Ta có: \(5x^2+6xy+5y^2=3(x^2+y^2+2xy)+2(x^2+y^2)\)

\(=3(x+y)^2+2(x^2+y^2)\geq 3(x+y)^2+(x+y)^2\) (theo BĐT AM-GM)

\(\Leftrightarrow 5x^2+6xy+5y^2\geq 4(x+y)^2\Rightarrow \sqrt{5x^2+6xy+5y^2}\geq 2(x+y)\)

Thực hiện tương tự với những biểu thức còn lại suy ra:

\(P\geq \frac{2(x+y)}{x+y+2z}+\frac{2(y+z)}{y+z+2x}+\frac{2(z+x)}{z+x+2y}\)

\(P\geq 2\left(\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{z+x}{z+x+2y}\right)=2\left(\frac{(x+y)^2}{(x+y+2z)(x+y)}+\frac{(y+z)^2}{(y+z+2x)(y+z)}+\frac{(z+x)^2}{(z+x+2y)(z+x)}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(P\geq 2.\frac{(x+y+y+z+z+x)^2}{(x+y+2z)(x+y)+(y+z+2x)(y+z)+(z+x+2y)(z+x)}\)

\(\Leftrightarrow P\geq 2. \frac{4(x+y+z)^2}{2(x+y+z)^2+2(xy+yz+xz)}=\frac{4(x+y+z)^2}{(x+y+z)^2+xy+yz+xz}\)

\(\geq \frac{4(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=3\) (theo AM-GM \(xy+yz+xz\leq \frac{(x+y+z)^2}{3}\))

Vậy \(P\geq 3\Leftrightarrow P_{\min}=3\)

Dấu bằng xảy ra khi \(x=y=z\)

Bình luận (0)
QN
Xem chi tiết
MT
26 tháng 9 2017 lúc 7:55

đề bài là j vậy bạn

Bình luận (0)
QN
26 tháng 9 2017 lúc 10:08

phân tích thành nhân tử á bạn trong 3 cách

1.đặt nhân tử chung

2.sử dụng 7 hằng đẳng thức đáng nhớ

3.nhóm các hạng tử

4.áp dụng các phương pháp trên

giúp mình vs

Bình luận (0)
MD
Xem chi tiết
HD
14 tháng 1 2018 lúc 9:05

Ta có: \(5x^2+6xy+5y^2=4\left(x+y\right)^2+\left(x-y\right)^2\ge4\left(x+y\right)^2\)

tương tự: \(5y^2+6yz+5z^2\ge4\left(y+z\right)^2\) ;\(5z^2+6xz+5z^2\ge4\left(x+z\right)^2\)

\(\Rightarrow P\ge\dfrac{2\left(x+y\right)}{x+y+2z}+\dfrac{2\left(y+z\right)}{y+z+2x}+\dfrac{2\left(x+z\right)}{x+z+2y}\)

\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{x+y+2z}+\dfrac{y+z}{y+z+2x}+\dfrac{x+z}{x+z+2y}\)

\(\Leftrightarrow\dfrac{P}{2}\ge\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\)Theo BDT Nesbit

\(\dfrac{x+y}{\left(x+z\right)+\left(y+z\right)}+\dfrac{y+z}{\left(x+y\right)+\left(x+z\right)}+\dfrac{x+z}{\left(x+y\right)+\left(y+z\right)}\ge\dfrac{3}{2}\)

Vậy \(\dfrac{P}{2}\ge\dfrac{3}{2}\Leftrightarrow P\ge3\)

Min P = 3 khi x = y = z

Bình luận (0)
TV
Xem chi tiết
H24
20 tháng 10 2021 lúc 18:42

2)3x2-6xy+3y2=3(x2-2xy+y2)=3(x-y)2

3)3(x-y)-5y(y-x)=3(x-y)+5y(x-y)=(x-y)(3+5y)

5)(x+y)3-(x-y)3=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]=(x+y-x+y)(x2+2xy+y2+x2-y2+x2-2xy+y2)=2y(3x2+y2)

6)3x2-5x+2=3x2-2x-3x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(x-1)(3x-2)

Bình luận (0)
NT
Xem chi tiết
AM
19 tháng 6 2015 lúc 20:48

b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)

c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)

d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)

e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)

k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)

m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)


 

Bình luận (0)
NM
27 tháng 6 2016 lúc 10:24

b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)

Bình luận (0)